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Abstract

Cancer continues to be a significant international health issue, which demands the invention of new methods

for early detection, precise diagnoses, and personalized treatments. Artificial intelligence (Al) has rapidly become

a groundbreaking component in the modern era of oncology, offering sophisticated tools across the range of can-
cer care. In this review, we performed a systematic survey of the current status of Al technologies used for cancer
diagnoses and therapeutic approaches. We discuss Al-facilitated imaging diagnostics using a range of modalities
such as computed tomography, magnetic resonance imaging, positron emission tomography, ultrasound, and digital
pathology, highlighting the growing role of deep learning in detecting early-stage cancers. We also explore applica-
tions of Al in genomics and biomarker discovery, liquid biopsies, and non-invasive diagnoses. In therapeutic interven-
tions, Al-based clinical decision support systems, individualized treatment planning, and Al-facilitated drug discovery
are transforming precision cancer therapies. The review also evaluates the effects of Al on radiation therapy, robotic
surgery, and patient management, including survival predictions, remote monitoring, and Al-facilitated clinical trials.
Finally, we discuss important challenges such as data privacy, interpretability, and regulatory issues, and recom-
mend future directions that involve the use of federated learning, synthetic biology, and quantum-boosted Al. This
review highlights the groundbreaking potential of Al to revolutionize cancer care by making diagnostics, treatments,
and patient management more precise, efficient, and personalized.
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Graphical Abstract

This graphical abstract schematically illustrates the progressive role of artificial intelligence in the cancer treatment
continuum.
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Introduction microenvironment (TME) has particularly garnered

Cancer, an illness that can affect people from all walks of
life, is an intricate worldwide health concern that contin-
ues to require attention. Cancer is a disease that affects
people regardless of age and causes suffering all around
the world. Cancer is the second most prevalent cause of
mortality worldwide, accounting for one in six deaths
in 2020, according to the World Health Organization
(WHO) [1]. Through a gradual accumulation of biologi-
cal and therapeutic knowledge which accelerated with
the development of molecular-cell biology and genet-
ics in the second half of the twentieth century, mod-
ern medicine altered that perspective. Together with
more-recent technological developments, this progress
has made it possible to comprehend the disease in ways
that were never possible before. The term "cancer" now
encompasses hundreds of different kinds of diseases with
similar basic characteristics. Beyond figuring out a par-
ticular cancer type’s genetic fingerprint and molecular
composition, we now know how crucial the systemic and
local tumor environment is to the disease’s progression
and presentation. In recent years, interactions between
the immune system and the immunological tumor

notice [2, 3].

The role of artificial intelligence (Al) in modern oncology

Al refers to the wide area of computer science where algo-
rithms or machines are designed to mimic human intel-
lect. In machine learning (ML), a subfield of Al, computers
carry out predetermined tasks and use statistical tech-
niques to find hidden patterns in data and enhance model
performance [4]. Unlike standard ML, the ML subfield of
deep learning (DL) does not rely on human-defined heu-
ristics to complete a task. Instead, DL uses the capability of
multilayered neural networks to eliminate manual feature
extraction labor and allow for the self-discovery of features
that humans are unaware of or would not have expected
[5, 6]. The major AI concepts are listed in Table 1. Elec-
tronic health record (HER) clinical notes, diagnostic and
procedural reports, and other unstructured data are trans-
formed into discrete data elements using natural language
processing (NLP) [7], an adjacent specialization within Al
that aims to bridge human language with machine inter-
pretation [8]. Recent developments in the field have sig-
nificantly improved the technology’s efficacy, allowing
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Table 1 Key Al concepts and architectures relevant to cancer diagnostics and research

Category Concept / Model Description & Relevance in Oncology References

Machine Learning (ML) Supervised Learning Learn from labeled data to make predictions. Used for clas-  [14]
sifying tumors, predicting survival, etc

Unsupervised Learning Discovers hidden patterns in unlabeled data; applied
in clustering patients or tumor subtypes

Semi-supervised Learning Combines a small amount of labeled data with a large
unlabeled dataset, useful in medical imaging with limited
annotations

Reinforcement Learning Learns by trial-and-error through feedback. Applied
in treatment policy optimization

Feature Engineering The process of selecting or transforming variables
to improve ML performance. Crucial for structured EHR
and omics data

Classical ML Models Support Vector Machines (SVM) Effective in high-dimensional spaces (e.g., gene expression  [15]
data) for classification tasks
Random Forests (RF) Ensemble of decision trees; robust against overfitting,
used for biomarker prediction and classification
Logistic Regression (LR) Common baseline model for binary classification in sur-
vival and risk prediction
k-Nearest Neighbors (k-NN) Instance-based learner; used in similarity-based drug repo-
sitioning and subtype classification
Deep Learning (DL) Deep Neural Networks (DNNs) Multilayered feedforward networks for structured data, [16-29]
widely used in survival prediction
Convolutional Neural Networks (CNNs) Specialized for image data (CT, MRI, histopathology);
extracts spatial hierarchies in features
Recurrent Neural Networks (RNNs) Suited for sequential data (e.g., patient records); models
time-dependent health trajectories
Long Short-Term Memory (LSTM) A type of RNN that captures long-range dependencies;
applied in EHR and time-series prognosis
Gated Recurrent Units (GRUs) Efficient RNN variant; used in longitudinal cancer data
modeling
Residual Networks (ResNet) DL architecture with skip connections; enables deeper

networks for accurate image-based classification. Exten-
sively used in digital pathology

Vision Transformers (ViT) Transformer-based models adapted for image analysis;
increasingly used for WSI (whole-slide image) classification

LongNet A transformer variant enabling processing of very long
sequences (> 32 k tokens); suitable for high-resolution
pathology slide and multi-modal data

U-Net A CNN architecture designed for biomedical image
segmentation; heavily used in tumor boundary and organ-
at-risk contouring

EfficientNet Optimized CNN with excellent performance at low
computational cost; used in real-time image analysis
and mobile health apps

Graph Neural Networks (GNNs) Models relational data; used for protein—protein interac-
tions, drug-target graphs, and patient similarity networks

Autoencoders (AEs) Unsupervised models for data compression and denois-
ing; used in omics dimensionality reduction

Variational Autoencoders (VAEs) A probabilistic extension of AEs used for generative tasks
(e.g., molecule generation)

Generative Adversarial Networks (GANs) Generate realistic synthetic data (e.g., histopathology
images, molecules). Applied in data augmentation
and simulation

Adversarial Autoencoders (AAEs) Combines GAN and AE for structured representation learn-
ing. Used in molecule and feature generation
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Table 1 (continued)
Category Concept / Model Description & Relevance in Oncology References
Transformers and Attention Models Transformer Core architecture using self-attention; enables context- [30-39]
aware modeling. Used in NLP and multi-modal integration
in oncology
BERT / BioBERT / ClinicalBERT Pre-trained language models fine-tuned on biomedical
texts. Applied to EHR, radiology reports, and literature
mining
GPT/ GPT-3 / GPT-4 Autoregressive transformers used for medical Q&A, sum-
marization, and even synthetic data generation
T5/ BioT5 Sequence-to-sequence transformers used in molecular-to-
text or image-to-report tasks
CLIP (Contrastive Language-Image Pretraining) Joint vision-language model; maps images and text
to a shared space. Applied in pathology image captioning
and labeling
Learning Paradigms Transfer Learning Fine-tuning pre-trained models on domain-specific data.
Useful in small medical datasets
Federated Learning Decentralized training across institutions without data
sharing; supports data privacy in multi-center oncology
studies
Self-supervised Learning Learns from unlabeled data using pretext tasks. CHIEF
and other models use this for pathology image feature
extraction
Contrastive Learning Learns representations by comparing similar/dissimilar
pairs. Enhances embedding quality for histology and radi-
omics
Multi-task Learning Simultaneous learning of related tasks. Improves generali-
zation in cancer subtype classification and prognosis
Evaluation Metrics AUROC Measures model's ability to discriminate between classes;  [40-45]

Accuracy, Sensitivity, Specificity

Precision, Recall, F1-score
Kaplan-Meier, C-index

Confusion Matrix

critical in binary cancer detection tasks
Basic metrics used to assess model performance

Balance false positives and negatives; important in imbal-
anced cancer datasets

Used in survival models to evaluate time-to-event predic-
tions

Summarizes classification outcomes; visual tool for error
analysis

it to be used to automate the gathering and recording of
patient outcomes, progression-free survival (PFS), and
other tumor features associated with cancer [9]. The con-
struction of intricate databases and tumor registries may
be facilitated by such automation, which recursively boosts
the strength of generated models. NLP has been used to
match clinical trials and detect possible adverse medica-
tion reactions, either alone or in conjunction with ML/DL
approaches [10-12]. Furthermore, the use of Al for clinical
decision-making is thought to improve the likelihood of
early disease diagnosis and predictions using high-resolu-
tion imaging and new generation sequencing (NGS) meth-
ods. Creating sizable datasets and employing specialized
bioinformatic tools have also resulted in the introduction
of novel biomarkers for diagnosing cancer, the develop-
ment of novel tailored medications, and the delivery of
potential treatment regimens [13].

Importance of Al in enhancing cancer diagnostics

and treatment

Numerous studies have suggested that screening can
increase early cancer detection and decrease mortal-
ity (Fig. 1). However, even in disease groups like breast
cancer where screening programs are well-established,
discussions about patient selection and risk-benefit trade-
offs continue, and concerns have been raised regarding a
perceived "one size fits all" approach that is inconsistent
with the goals of personalized medicine [46—48]. In the
near future, Al algorithms may play a part in enhancing
this procedure since they can analyze enormous volumes
of multimodal data to find signals that would otherwise
be hard to spot [49-51].
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Al's Multifaceted Impact on Cancer Care
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Fig. 1 Al's diverse roles in cancer care, including enhanced diagnosis, personalized treatment, clinical decision support, biomarker discovery,
and drug development each contributing to improved precision, speed, and outcomes in oncology through data-driven innovations

Objectives and scope of this review

This article provides an in-depth review of Als role in
modern cancer diagnostics, consolidating diverse can-
cer types and Al-facilitated diagnostic approaches into
a cohesive overview. Al in oncology enhances diagnosis,
treatment, and patient management by increasing pre-
cision, efficiency, and personalization. Leveraging ML,
DL, and NLP, AI analyzes complex datasets—includ-
ing pathology reports, clinical records, genomic data,
and medical images—to generate insights that support
more accurate and timely clinical decisions. Its goals
include early detection, personalized treatment plan-
ning, and streamlined care delivery to improve patient
outcomes. This review spans both research-driven Al
innovations and clinical applications, incorporating stud-
ies, benchmark models, commercial tools, and regula-
tory perspectives. It offers valuable insights for a wide
audience, including oncologists, Al researchers, infor-
maticians, policymakers, and biomedical engineers. By
framing Al as a bridge between predictive and precision

oncology, this review supports strategic decision-making
and encourages research that translates Al's theoretical
promise into real-world clinical impact.

Al in cancer diagnostics

Al is developing at an exponential rate. Clinical oncol-
ogy research is now more focused on comprehending the
intricate biological architecture of cancer cell prolifera-
tion in order to decipher the molecular origins of cancer.
In order to address the current situation of rising cancer
mortality rates worldwide, it has also concentrated on
processing millions of pertinent cases in big data and
computational biology [52]. Furthermore, the use of Al in
clinical decision-making is thought to improve the like-
lihood of early disease diagnoses and predictions using
high-resolution imaging and NGS methods. By creating
sizable datasets and employing specialized bioinformatic
tools, it may also result in introducing novel biomarkers
for diagnosing cancer, developing novel tailored medica-
tions, and delivering potential treatment regimens [13].
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Imaging-based Al diagnostics

Al which is based on computational models and bio-
informatics-based algorithms, presents medical imag-
ing technology (MIT) with significant opportunities for
advancement. It can identify biological alterations and
aberrant cellular growth in the body [53]. In addition
to being crucial in radiology, Al-assisted MIT has had a
significant influence on neuroradiography and medical
resonance imaging. Numerous dynamic applications of
Al exist, including picture interpretation and categori-
zation, data organization, information storage, informa-
tion mining, and much more. Al is anticipated to greatly
assist pathologists in enhancing diagnostic specificity
because of its broad application in biomedical imaging
technology [54].

Assessing tumors using traditional radiographic imag-
ing is primarily based on qualitative characteristics, such
as tumor density, enhancement patterns, intra-tumoral
cellular and acellular compositions (including blood,
necrosis, and mineralization), tumor margin regularity,
anatomical relationships with surrounding tissues, and
impacts on these structures. It is possible to quantify a
tumor’s size and shape using one- (1D), two- (2D), and
3-dimensional (3D) analyses. All of these qualitative phe-
notypic descriptions are referred to as "semantic” traits.
In contrast, a quickly developing area known as radiom-
ics is making it possible to digitally decode radiographic
pictures into quantitative properties, such as size, shape,
and textural pattern descriptors [55]. The automatic
quantification of radiographic patterns in medical imag-
ing data has significantly progressed in recent years due
to advancements in Al approaches. A subset of Al called
DL is particularly promising since it automatically learns
feature representations from sample photos and was
demonstrated to perform on par with or even better
than humans in task-specific applications [5, 56]. DL has
shown relative robustness against noise in ground truth
labels, among other things, even though it requires enor-
mous datasets for training [57].

In external-beam radiation therapy, tomographic
imaging is vital for follow-up care, image guidance, and
treatment planning. A CT simulation is typically per-
formed before treatment to image the targeted body
part. Using these images, the tumor and nearby critical
structures are identified to develop the optimal treat-
ment plan. For tumors near the diaphragm (e.g., liver
or lower lung lobe), 4D CT scans may be used to track
respiratory motion. MRI is often recommended for
brain, paraspinal, head and neck, prostate cancers, and
extremity sarcomas due to its superior soft-tissue con-
trast. MRI scans are fused with CT for tumor deline-
ation and organ-at-risk contouring, or used alone in
MRI-only simulations with synthesized CT for planning
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and dose calculation. Unlike CT and MRI, PET reveals
tumor metabolism and helps define dose-escalation
volumes, especially in head and neck cancers [58].

ATs automated abilities such as precise tumor volume
tracking over time, simultaneous monitoring of multiple
lesions, linking phenotypic nuances to genotypes, and
predicting outcomes via comparisons with vast tumor
databases—can enhance clinicians’ qualitative judgment.
DL methods further improve generalizability across dis-
eases and imaging types, reduce noise sensitivity and
errors, and may enable earlier treatments and significant
clinical advances. While most studies remain preclini-
cal, the evolution of automated radiographic "radiomic"
markers may ultimately shift cancer diagnostics by iden-
tifying actionable tumor abnormalities [59].

Today’s digital pathology faces three core challenges
that must be addressed as digitization expands, and Al
capabilities evolve, These include:

(1) improved efficiency, quality control, and image
management in laboratory operations;

(2) clinical decision support, where algorithms are used
to identify areas of interest or make specific diagno-
ses; and

(3) research and development, where new biomarkers
[60], transcriptomics [61], and correlations between
image characteristics and prognostics have been
discovered [62].

The application of Al for digital pathology predates
the introduction of whole-slide images (WSIs). Previous
research showed that computer vision and Al methods
can distinguish between diseases in pathology images.
However, previously chosen regions of interest (ROIs)
made up the majority of those image datasets. Because
pathologists must first choose the areas of interest, this
approach is extremely time-consuming and technically
impractical to integrate into a laboratory’s clinical pro-
cess [63]. One major obstacle in healthcare systems is
the early-stage identification of cancer, mainly because
early stages of cancer are modest and frequently asymp-
tomatic. Early cancer detection is essential for effec-
tive treatment and higher survival rates, but there are a
number of reasons that make this process complex and
challenging. This investigation explores the complexities
of these problems, including systemic, technological, and
biological ones, and emphasizes how urgently diagnostic
methodology innovations are needed.

Several Al models are being used for cancer detec-
tion imaging. These models include Prov-GigaPath [64],
Owkin’s models [65], CHIEF [66], and Google Deepmind
Al [67]. Conventional Al models are trained to do par-
ticular tasks, such detecting cancer cells or forecasting
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treatment results. Nevertheless, these models require
extensive training datasets, and their outcomes fre-
quently fluctuate depending on the tissue type or imaging
technique (Fig. 2). Usually, they are modified from com-
puter vision models that were first created to recognize
large objects. Self-supervised learning is a more-adapta-
ble technique that trains AI models using unlabeled data
and was shown to perform better on a variety of tasks.
However, despite recent developments in self-supervised
learning models, the widespread application of AI mod-
els for cancer diagnosis is still hampered by their limited
generalizability and narrow task emphasis.

Y. Ma et al. (2025) [68] introduced HistoPathExplorer,
a web-based tool for evaluating Al in histopathology.
It standardizes datasets and metrics, enabling users to
explore model performance and clinical relevance. A
highlighted study used MIL on 1,065 CRC WSIs from the
MCO dataset to predict microsatellite instability (MSI),
a key biomarker, by aggregating features from artifact-
free tiles via pretrained models [64]. With an AUROC of
0.91, the MIL-based method demonstrated high predic-
tive accuracy, underscoring its potential as a non-invasive
alternative to traditional biomarker testing in CRC. How-
ever, the study noted limitations, such as dependence
on WSI quality and high computational demands, and
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suggested directions for future research to address these
challenges.

Digital pathology has significantly advanced with the
Prov-GigaPath concept in the context of cancer medi-
cal imaging. Prov-GigaPath is a foundation model cre-
ated jointly by Providence Health System, Microsoft,
and the University of Washington. Its purpose is to ana-
lyze gigapixel whole-slide pathology images in order to
improve cancer diagnoses and patient care [69]. To cap-
ture both local and global context, the model employs a
two-tier architecture: a tile encoder processes 256 X 256
pixel tiles from WSIs to extract local features, while a
slide encoder aggregates these embeddings into compre-
hensive slide-level representations. This design enhances
accuracy and efficiency by addressing the computational
challenges posed by large WSIs. Leveraging Prov-Path, a
large-scale dataset from the Providence Health Network
with slides from over 30,000 patients and 31 major tis-
sue types, Prov-GigaPath achieved top-tier performance
across 26 pathology tasks. The dataset is more than twice
the size of TCGA in patient count and over five times
larger in tile volume, providing a robust foundation for
model training [70].

Prov-GigaPath outperformed current models like the
Hierarchical Image Pyramid Transformer (HIPT) in
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comparative studies, achieving state-of-the-art perfor-
mance across 26 digital pathology tasks, including muta-
tion predictions and cancer subtyping. Prov-GigaPath,
for example, outperformed HIPT in mutation predic-
tion tasks, as evidenced by its superior AUROC and area
under the precision-recall curve (AURPC) scores. There
are various advantages to incorporating Prov-GigaPath
into medical imaging processes [71]. Because of its
capacity to interpret gigapixel WSIs, tissue samples can
be thoroughly analyzed, leading to better cancer diagno-
ses and more-individualized treatment plans. Precision
immunotherapy relies on the model’s ability to compre-
hend the tumor microenvironment (TME) by identify-
ing both local and global patterns in pathology slides.
Additionally, as an open-weight model, Prov-GigaPath
promotes openness and cooperation throughout the sci-
entific community, leading to improvements in digital
pathology. But there are restrictions to take into account.
The quality and diversity of the training data determine
how well the model performs; biases or inconsistencies in
the Prov-Path dataset may limit how broadly the model
can be applied. Furthermore, processing gigapixel pho-
tographs requires a significant amount of CPU power,
which could be problematic for organizations with weak
infrastructure [70].

X. Wang et al. (2024) [66] designed a general-purpose
ML framework called Clinical Histopathology Imaging
Evaluation Foundation, or CHIEF, that can extract vari-
ous features from pathology images for cancer diagnoses
and evaluation. This was done in order to address the
limited generalizability of some AI models in analyz-
ing images from different populations and digitization
methods. Using self-supervised learning and attention-
based integration, it was trained on 60,000 WSIs from
14 cohorts and outperformed existing models in 11 can-
cers. CHIEF combines patch-level feature extraction with
global representation learning, leveraging CTransPath
and CLIP encoders. Validated on data from 24 hospitals,
it demonstrated strong performance in prognosis, tumor
origin detection, and cancer cell classification.

CHIEF outperformed ABMIL, CLAM, and DSMIL
across 15 datasets and 11 cancers, with an AUROC of
0.9397—10-14% higher. Its pixel-level predictions closely
matched pathologist evaluations and identified key muta-
tions like TP53 and BAP1. Similarly, DeepMind’s CNN-
based system enhanced breast cancer screening, reducing
false positives by 5.7% and false negatives by 9.4% using
large mammogram datasets. Together, CHIEF and Prov-
GigaPath mark a shift from task-specific tools to scal-
able models excelling in prediction accuracy, subtyping,
and biomarker detection—demonstrating the growing
maturity of Al in cancer diagnostics [72]. The Lymph
Node Assistant (LYNA), another product of Google’s
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Al research, analyzes histopathological slides to iden-
tify metastatic breast cancer. With a 99% accuracy rate
in diagnosing metastatic cancer, LYNA outperformed
human pathologists, particularly in spotting tiny metas-
tases, which are sometimes difficult to find [73].
Alternative AI models such as Al Initiatives at the Univer-
sity of Pittsburgh assist pathologists in diagnosing prostate
cancer, and the University of Pittsburgh Medical Center
(UPMC) has used Al technologies such as Galen Prostate
from Ibex Medical Analytics. In order to detect cancer and
evaluate characteristics like Gleason grades, perineural
invasion, and tumor sizing. Galen Prostate uses DL algo-
rithms that have been trained on large datasets, including
rare prostatic cancers. Northwell Health created iNav, an
Al-powered diagnostic tool, to improve pancreatic cancer
early diagnosis and treatment [74]. iNav detects patients
with radiographic signs of pancreatic cancer through radi-
ology data analysis, enabling timely care. It uses an NLP
classifier trained to recognize phrases in radiology reports
linked to pancreatic cancer, scanning for language patterns
and keywords tied to masses or lesions. When indicators
appear, iNav flags them for further medical review. Given
pancreatic cancer’s late detection and poor prognosis, iNav
improves early detection by proactively analyzing imag-
ing. It cut the diagnosis-to-treatment time by 50%, tripled
biospecimen study participation, and increased referrals
to multidisciplinary clinics, improving care and research
opportunities. An improved DL model called Dual-Domain
Residual-based Optimization NEtwork (DRONE) [75] was
developed. DRONE reduces artifacts and boosts image
quality by integrating image and data domains (sinogram). It
has three modules: the embedding module expands sparse
sinogram data via an encoder-decoder network, enriching
inputs; the refinement module improves initial images using
a deep CNN; and the awareness module ensures consist-
ency between sinogram and reconstructed images through
regularization, integrating outputs from the other two
modules. DRONE addresses sparse-view CT challenges by
combining outputs across modules. Its performance evalu-
ated using PSNR, SSIM, and RMSE surpassed conventional
and other DL methods in reconstruction accuracy, feature
retention, and edge clarity. The integration of Al and ML
into cancer diagnostics has markedly improved accuracy,
speed, and treatment personalization. Al excels at analyz-
ing complex datasets, leading to more accurate diagnoses
and faster treatment initiation, which improves outcomes. It
also supports personalized medicine by integrating genetic
and clinical data to tailor treatments (Table 2). Developing
AI/ML models for cancer detection involves key steps. Data
collection requires diverse, high-quality datasets, includ-
ing imaging, genomics, and patient histories. Preprocessing
ensures data consistency via normalization, augmentation,
and annotation. Model selection is task-specific CNNs for



Page 9 of 41

159

(2025) 24

t al. Molecular Cancer

iwari e

T

pue poo4 yg4 ‘Buibew acueuosal dnaubel [ypy ‘152104 Wopuey Jy

32UQ Y007 A|UQ NOA OTOA ‘Buibew pueg-molieN [gN ‘1D ISeIU0D-UON LSIN ‘1D uolssiwa uoloyd-3|buls 1 )34s ‘AYydeibouwol uoissiwa uolisod 134 ‘uolensiuiwupy bniq

19N BulAyiun-21035 wns ‘Aydesbowoy paandwo) 1 ‘Sejly SWOUSD 19due) 3] D)/ HIOMIBU [BINSU [BUOIIN|OAUOD NN ‘sobewl ap1|s-3]0Y SISM

pulobuo

Aoeindoe

loselep

[16] 9715 195€1ep |[PWS S3IPNIS UOLepIeA obe15-A|183 9606~ 1D Jauad-nnyy solwolpel ‘NND Buibewr | D 130Ued dj1eaIduRy |opow YdNa

puiobuo sis1bojolpel uoleoyisseD

[06] uOnPZIPIEPUEIS DDA uofepljeA [eoIUlD  SA Adeindde paroidw| s1asejep [e)dsoH 19NSY 1ONsUQ punoseiin J90Ued ploIAy | 3|NPON PIoIAYL IV

uon 9%1°€6 A1dyIdads sisoubelq

[68 '88] A|IgeLIeA 21npad0oid -epljeA WaisAs-I N '%€°96 AUAIISUSS s1aseiep didodsopul NNDIONS3Y ‘OT0A (M 19N) Adodsopu3 130Ued [P1D3I0j0D) J30Ue?) [B12310[0D) |V

Aoeindoe SOIWO puibeig

[/8] 150D ‘Ajijenb buibew Bujobuo yoseasay Buibels 1aybiH 195e1ep |SIN -Ipes ‘bujuies) desg 12/13d Jadued bun  19dueD bun | D/13d IV
AjjenJed pajusw uon

[98 s8] AMjigelieA Jauueds -9 dwi Aleoiuly - -eauswibas panoidul| S195e1ep Gleig 19N-N 'NND YN sewoise|qol|b ‘sewlol|o slown| ureig YW I

uolsuedxa Ay 195€18P 19NbuUN

[#8]  -|epOwW ‘UofeZ||RIaUID) aseyd yoieasay AoeINddR 9/596 punosesn bun |V 9|geureidx3 SO3PIA pUNOSeII|N saseasip bun -W.IST-NND-aL

papaau uoAp sanbjuyday

[€8] sisAjeue aAneIRdUWOD) [BL [eIUID Z 95ty pealds Jadued 95193l leuy 1usned-zo L Buibew| pasueApy 1D/13d J9dUed 931e1504d ueds 19/13d VINS

suole|nbai uon Aouapyye suoleloqe| xnAjoyied g

[z8l ‘uoneibaiul ere -eyuawia|dwiy [edjuly - dnsoubelp paroidul |02 WIISAS Y3jeaH suliopeld |y KbojoyredoisiH snouep  eixaubeig sxaydineg
Spaau suond|paid

[18] 19se1ep ‘Aoeaud eleg Buiobuo yoleasay SISe1se1aW I911ag BENIENENg Buluies| dssg AbojoyredoisiH SNoLIeA |V 910D [ pleydly

S}IOMIFN uoleziw

Auxald Aujenb punoses|n -ndQ paseq-jenpisay

[s/] -wod [euoneindwod aseyd yoieasay sbew pasueyu] S125e1eP 3SISAI]  SHIOMIBU [RINdU da( 193dS ‘134 14N 1D snouep  ulewod-{end :IN0Yd
sanss| pulobuo uondipald

[08] uopeibaul [ea1ulD uonepljeA [e3IUD  SWOdIN0 paroidul| SERCIEENEN | NND  (SISM) ABojoyiedoisiH — snoLieA ‘eWOl|SYI0SaN SIDPOW SUMO

uon pulobuo eulodJes Bulpels pwodies

[6/]  -BPI[eA [PUISIXD SPIIN uofepleA [ea1ulD AoRINDOR 0578 UONEPI|RA J2IUD-NINA sojwiolpey +NND Buibew | |eauoyiadoniay |eauoyiadonay |y

spuewap PaARY W1} BujuleaT usawadio)

[8/] leuoneindwod  Bulobuo maAdl Y4 Judwiieas-sisoubeiq 195€18p |[oMY1IoN -ujai ‘bujules) desg 1D YN JadUed dj1eaiduRy AeN|!

SaAN (uap 2184 uon sweib PuIua3I0g

22 -ebau/sannisod asjeq -9MS) 3N eIl U] -2319p J9YbIY 9%9°/ | -Owwew + 000001 NND Aydesbowwep 130U I5PaIg J90ue) I5eRUg |V

uon Sladued

541 Aujigeyasdiau)  -epljeA aAndadsonay  sonsoubold panoidu suedsuaned 6101 44 WAS + So1uoipey puibew | 329u-peay ‘buni yoeouddy sojwolpey

sabu3)| 9%.6 Aoy IV ybing

[o/] -leyd Aljigezijesauany  Bujobuo sjeuy [edulD  -123ds ‘986 AUAISUSS eep |eydsoy ‘yoo o NND  (SISM) ABojoyiedoisiH J190Ued 91PIS0ld -S111d 4O ANSIaAIUN

s1aselep Aoeindoe snw
[£9]  p3Jaqe| 2b1e| sainbay AJ[ed1ul|> paieplieA 1adxa papaadxg MN) SURdS +000'5C NND Aydeibowwely laduedisealg |y puliydsaq 916009
selq 195e1ep ‘puewap 91e3504d ‘UOJ0D

[99] leuoneindwod  Bulobuo sjen [ed1uld 996 01 dn A>einddoy SIS JO SUOI|[IIN paseq-lawlojsuel]  (S|SM) AbojoyiedolsiH  ‘yoewols ‘snbeydos] 43IHD
sabuajeyd snieys Ylewyduag

EERITEYETEN] /suonejwiy uonepije [es1uld 2duULWIOIDd pasn 19seleq pasn [9pOW IV Ajepoy buibew adA} Jadue) ooy >nsoubeiq |y

J2sued uj soisoubelp () 3duabij2iul [epyie paseg-buibew| g ajqel



Tiwari et al. Molecular Cancer (2025) 24:159

images, RNNs or LSTMs for sequential data, and decision
trees for classification. Models are trained on large datasets
and validated regularly to enhance accuracy. CNNs effec-
tively analyze images like MRIs and mammograms; LSTMs
and RNNs process sequential clinical data; decision trees
and RFs support diagnostic decision-making. These models
have demonstrated strong performance in cancer detection.

Al in genomics and biomarker discovery

Advancements in proteomics, genomics, and combinato-
rial chemistry have led to numerous chemical and bio-
logical databases, greatly enhancing our understanding of
cancer molecular biology. Clinically, this knowledge can
transform cancer assessment and treatment. However,
identifying therapeutically relevant insights from vast
raw genetic data remains a challenge. Researchers have
applied AI to identify cancer subgroups based on genes,
mRNA, and miRNA clusters (Fig. 3). Using deep flexible
neural forest models and stacked autoencoders (AEs),
mRNA, miRNA, and DNA methylation data were inte-
grated to classify ovarian, breast cancers, and glioblasto-
mas into subtypes [92, 93].

Both supervised and unsupervised learning were
applied to RNA, miRNA, and methylation data in hepa-
tocellular carcinoma (HCC), revealing survival-asso-
ciated consensus driver genes and two distinct patient
subgroups. Multi-omics integration of proteomics and
metabolomics data also stratified breast cancer patients
into low- and high-risk groups. For subtyping, AEs and
multiple-kernel frameworks were used [94]. Al plays a
critical role in stratifying patients into prognostic and
survival-based subgroups, enabling early cancer detec-
tion and progression forecasting. In neuroblastoma, gene
expression and copy number alteration data helped clas-
sify subgroups [95]. For colorectal cancer (CRC) relapse
prediction, integrated features included copy number
variations, metabolomics, miRNA, and gene expression
data [96]. he MRMR technique identified survival-related
features in ovarian cancer [97]. Surviving breast cancer
was also predicted using neural networks trained with
DL [98]. The SALMON method combined multi-omics
data and conventional biomarkers via eigengene matrices
of co-expression networks to identify key genes and cyto-
bands [99]. Additionally, a kernel-based ML approach
was used to assess the predictive value of transcriptomic,
epigenomic, and genomic data for different tumors
[100]. When clinical criteria are taken into account, this
method has demonstrated notable gains, although its
effectiveness varies depending on the type of cancer.

Technological advances have made it possible for soft-
ware developers and health researchers to closely work
together to use multifactor analyses to enhance predic-
tions. These assessments are reported to be much more
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accurate than the actual numbers. Creating models that
use Al algorithms for cancer detection and prognosis is
becoming a higher priority for researchers. These tactics
are currently being used to improve the accuracy of can-
cer prognoses that are diversified and recurrent, and pro-
mote survival [101].

In order to learn more about the molecular basis of the
disease, clinical oncology research has primarily focused
on fully understanding the mechanisms driving the pro-
liferation of cancer cells. Additionally, its goal is to use
computational biology to manage enormous volumes of
data from millions of relevant cases in order to combat
rising worldwide mortality rates linked to cancer. Fur-
thermore, it is anticipated that the use of Al for clinical
decision-making will improve the use of NGS and high-
resolution imaging for early illness identification and
prediction [100]. Al has the potential to greatly increase
the precision and promptness of disease detection and
prognosis by utilizing these cutting-edge technologies
[102]. Al has the potential to produce new biomark-
ers for cancer diagnosis. Building a system that is suffi-
ciently trained to correctly assess whether a patient will
need immunotherapy is the aim of Al functionality. Al
can estimate which immunotherapeutic medications
will have the largest impact on a patient’s recovery and
identify patients who need additional testing, such as
whole genome spectroscopy. With the help of validated
real-world case studies, Al is increasingly being used in
the medical field with the goal of successfully overcom-
ing obstacles of correctly detecting various cancer types.
A comprehensive description of the framework needed
for Al to operate as planned is also included [103]. Al-
driven biomarker discovery uses sophisticated computer
methods to examine large, intricate biological datasets.
SVMs and RFs are two popular supervised learning tech-
niques that are used to precisely stratify patients by clas-
sifying them according to biomarker profiles [104]. These
models can recognize important biological character-
istics linked to therapy responses or illness progression
since they are trained on labeled datasets. Unsupervised
learning approaches, on the other hand, such as cluster-
ing algorithms (like k-means and hierarchical cluster-
ing), reveal hidden patterns in genomic data and facilitate
finding new biomarker groupings without predetermined
labels [105]. Numerous AI models are used in genomics
and biomarker discovery to process large-scale genomic
datasets, find disease-associated biomarkers, and support
personalized medicine (Table 3). These models include
DeepVariant [106] (Google), AlphaFold [107], IBM Wat-
son for Oncology (WFO) [108], AI-Driven Liquid Biopsy
Analysis, CancerSEEK AI [109], PRS-AI [110], and Al for
Drug Response Prediction [111].
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Fig. 3 Integrative pipeline combining gene expression, variant analysis, and Al/ML modeling. It starts with RNA-Seg-based differential
gene analysis, followed by morbid variant filtering, multimodal machine learning, and finally outputs predictive models, risk estimations,
and disease-specific visual associations for precision medicine
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Google’s DeepVariant, a deep CNN for detecting
genetic variants in NGS data, transforms sequencing
reads into pileup images and classifies them using the
Inception architecture for accurate genotype predic-
tions. Evaluated on Genome in a Bottle benchmarks, its
performance was assessed using precision, recall, and
F1-score across diverse genomic contexts. DeepVariant
outperformed traditional methods, especially in complex
regions.

DeepMind’s AlphaFold predicts protein structures from
amino acid sequences using deep learning, evolutionary
data, and attention mechanisms. Its performance in CASP
contests showed near-experimental accuracy, advancing
structural biology and drug discovery. H. Sun et al. (2025)
[117] showed AlphaFold 3’s role in identifying cancer bio-
markers in uveal melanomas via cytokine pathway analy-
sis, combining AlphaFold predictions with scRNA-Seq,
docking, and enrichment studies. It effectively revealed
treatment-relevant biomarkers. Somashekhar et al. (2017)
[118, 119] assessed IBM Watson for Oncology (WFO)
on 638 breast cancer cases, comparing its treatment sug-
gestions with Manipal Multidisciplinary Tumor Board
(MMDT). WEO categorized recommendations as REC,
EC, or NREC, using ML and NLP to mine medical data.
Overall concordance was 73%, with 80% in non-meta-
static and 45% in metastatic cases. Triple-negative agree-
ment was 67.9%; HER2-negative, 35%. WFO generated
recommendations in 40 s, compared to 12—-20 min manu-
ally, aiding biomarker-based decision-making despite lim-
itations across cancer subtypes.

Jin et al. (2025) [120] explored computational techniques
for early pancreatic cancer (PC) detection. ML models
like RFs, SVMs, and DL were applied to complex data-
sets. NGS and GWAS helped identify key mutations (e.g.,
TP53, KRAS). Al-based CDSSs used Bayesian networks
for personalized risk and treatment. Radiomics via CNNs
and CEH-EUS imaging improved diagnosis, while liquid
biopsies detected ctDNA, CTCs, miRNAs, and exosomes.
Multi-omics integration enhanced precision medicine for
early diagnosis and personalized care. Sud et al. (2021)
[121] examined polygenic risk scores (PRSs) for cancer
susceptibility. PRSs aggregate multiple variants to estimate
risk but vary in accuracy by cancer type. For PC, PRSs
achieved an AUC of ~0.67, but clinical utility was limited
in rare cancers due to minimal absolute risk increases.
Combining PRSs with non-genetic risk factors yielded
only slight gains in predictive power. The effectiveness of
PRSs for guiding interventions like screening or preven-
tion remains uncertain and requires further study.

Al-Powered liquid biopsies and early cancer detection
The identification and examination of liquid biopsy bio-
markers, such as circulating tumor cells (CTCs) and
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circulating tumor DNA (ct)DNA, have made tremen-
dous strides in the last 10 years. Their clinical utility in
early cancer detection, disease monitoring, and therapy
response evaluations have earned them acclaim (Fig. 4).
The advent of liquid biopsies is beneficial since it pro-
vides a quick, real-time monitoring method that is mini-
mally invasive and may be an alternative to conventional
tissue biopsies. In environments with limited resources,
the optimal liquid biopsy platform should correctly
reflect the molecular heterogeneity of the patient’s illness
in addition to extracting more CTCs or ctDNA from a
small sample volume [122].

In liquid biopsies, small amounts of biofluids are col-
lected to analyze components produced by cancer cells.
Rich supplies of cancer biomarkers can be found in
blood, saliva, urine, and cerebrospinal fluid. These bio-
markers can exist in free form or be linked to other fluid-
secreted structures. Liquid biopsies may make it easier
to conduct dynamic studies of molecular or cellular bio-
markers. Accurate early-stage diagnosis and prognosis,
tracking the course of the disease, evaluating the effec-
tiveness of certain treatments, and determining thera-
peutic goals for drug development are all made possible
by liquid biopsies [123].

Additionally, liquid biopsies facilitate dynamic studies
of cellular or molecular indicators. CTCs and ctDNA
are two biofluid components that were shown in studies
to be essential for early-stage cancer detection [124].
The primary tumor site releases components includ-
ing CTCs and ctDNA into the bloodstream, which aids
in the spread of cancer. However, they are difficult to
detect and evaluate due to their great degradability and
low concentration (1-1000 CTCs/mL) [125]. A major
obstacle to any separation and characterization strategy
in cancer research is the physical similarity of CTCs to
certain white blood cells (WBCs), phenotypic hetero-
geneity, and the epithelial-to-mesenchymal transition
(EMT). The EMT is a process through which cancer
cells pass to help them separate from the main tumor
and enter the bloodstream [126]. EMT entails the
acquisition of mesenchymal traits, such as the expres-
sion of the cytoskeletal protein, vimentin, and the loss
of epithelial traits, such as downregulation of the adhe-
sion molecule, E-cadherin. Vimentin is linked to cancer
cell invasiveness and macrophage-secreted interleukin
(IL)-35 and was reported to be overexpressed in a vari-
ety of cancers, including breast cancer and extrahe-
patic cholangiocarcinomas. The transcription factors
SNAIL (also called SNAIL), SNAI2 (SLUG), TWIST1,
and FOXC2 can regulate the EMT process, which is
regulated by transforming growth factor (TGF)-f, Wnt,
and Notch signaling [127, 128]. Single cancer cells or
groups of tumor cells may be involved in this invasion
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Fig.4 Al-powered liquid biopsy and genomic technologies for early cancer detection and personalized oncology. It highlights the use
of circulating biomarkers (ctDNA, CTCs), next-generation sequencing, and Al/ML models to identify cancer biomarkers and assess individual risk

using multi-omics data for precision treatment planning

process. While intrinsic tumor hypoxia may trigger the
intravasation of cell clusters, other alternative routes
likely also play a role. TGF-f signaling can mediate the
intravasation of single cells [129].

The Circulating Cell-free Genome Atlas (CCGA) pro-
ject is a premier example of a population-scale investiga-
tion that combines ML and cancer cell-free (cf)DNA [130].

It seeks to ascertain if ML can use genome-wide cfDNA
sequencing data to detect and localize numerous can-
cer types with high specificity. Whole-genome bisulfite
sequencing (WGBS) was reported to perform better than
whole-genome sequencing (WGS) and targeted genome
sequencing approaches in terms of genome-wide methyla-
tion patterns in the first CCGA sub-study [131]. Custom
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models identify methylation patterns per location as being
comparable to those originating from a certain form of can-
cer in the second sub-study. Two logistic regression ensem-
bles carry out tissue of origin localization and additional
cancer/non-cancer sample classification.

Building upon these ideas, J. Li et al. (2021) [132])
created a unique method called DISMIR that uses low-
depth cfDNA sequencing data to provide sensitive and
reliable cancer detection. This method combines plasma
cfDNA data from WGBS and WGS. The "switching
region" idea, a novel feature engineering technique used
in DISMIR, efficiently identifies cancer-specific differ-
entially methylated regions that support individual read
source predictions. The site of malignancy and tumor
load can be predicted by mapping cfDNA reads back to
their source. To determine the origin of each read and
the malignancy status, DISMIR uses a DL model that
incorporates DNA sequences and methylation states.
This model does a good job of detecting hepatocellular
cancer. Early cancer detection can be aided by cfDNA
data and ML techniques. In order to help distinguish
non-cancer controls and patients with early-stage CRC,
Wan et al. (2019) [133] created computational methods
that can identify correlations between cfDNA profiles
and the cancer status. By counting the number of frag-
ments that overlapped each known protein-coding gene,
they converted WGS data from cfDNA into pertinent
input features. They then normalized the data to take
feature-length, read depth, and sequence-content biases
into account.

In order to improve the efficiency of models in making
numerous clinically relevant decisions, future research
in cfDNA analysis could also look into alternatives to the
use of ML algorithms as models, such as ensemble and
hybrid models, various neural network structures (such
as CNNs, AEs, and RNNs), and training methods like
transfer learning.

Mgbole (2025) [134]examined how CTCs, cfDNA,
miRNAs, and protein biomarkers can be used to detect
metastatic cancer using DL models, namely CNNs [135]
and RNNs [136]. To guarantee the generalizability and
robustness of the model, the study incorporated mul-
timodal data from extensive, multicenter datasets that
included blood samples from various patient cohorts.
The methodology included CNN-based image recogni-
tion for immunofluorescent CTC detection [137], sig-
nal processing techniques for preprocessing biomarker
data, AEs and deep neural networks (DNNs) for feature
extraction, and RNNs for analyzing temporal variations
in cfDNA mutations for early metastasis predictions.
In order to increase the predictive accuracy by utilizing
spatial and sequential biomarker data, the study used an
ensemble model technique that combined CNNs and
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transformer-based DL architectures and DL models to
maximize classification performance. The use of transfer
learning, which reduced data dependency and computa-
tional costs by fine-tuning pretrained models on sizable
biology datasets for predicting metastatic cancer, was a
crucial component of the work. The study outperformed
conventional biomarker-based diagnostics by demon-
strating high sensitivity (>90%) and specificity (>95%) in
detecting metastatic signals from blood samples [138].
According to the results, Al-driven liquid biopsy analy-
ses can lessen the need for invasive tissue biopsies, enable
individualized treatment plans, and greatly increase early
detection rates. In order to ensure that neural network
decisions are in line with biological and clinical expecta-
tions [113], the study emphasized the use of explainable
Al (XAI) tools like Grad-CAM [139] and SHAP (Shapley
Additive Explanations) [140] for model transparency. To
improve diagnostic precision and individualized cancer
treatment, future prospects involve merging multi-omics
datasets, which combine liquid biopsy AI models with
genomics, transcriptomics, and proteomics (Table 4).

Klein et al. (2021) [147] evaluated GRAIL’s Galleri test,
an AI/ML-powered multi-cancer early detection (MCED)
tool analyzing cfDNA methylation patterns. Part of the
CCGA study (NCT02889978), this large clinical valida-
tion sub-study included 4,077 participants—2,823 can-
cer patients and 1,254 confirmed non-cancer controls
(1-year follow-up). The test demonstrated high specific-
ity (99.5%) and stage-dependent sensitivity: 16.8% (stage
1), 40.4% (II), 77.0% (I11), and 90.1% (IV), with an overall
sensitivity of 51.5%. For 12 high-mortality cancers, stage
I-III sensitivity reached 67.6%. In 88.7% of true posi-
tives, the test accurately identified the cancer signal ori-
gin, detecting over 50 cancer types. These results support
Galleri’s potential as a blood-based complement to cur-
rent single-cancer screening methods, enhancing early
detection across diverse cancers [148].

Karimzadeh et al. (2024) [143] developed Orion, a
multi-task generative Al model for analyzing circulating
orphan non-coding RNAs (oncRNAs) to enhance liquid
biopsy-based early detection of non-small cell lung can-
cer (NSCLC). The study used serum from 1,050 treat-
ment-naive individuals—419 NSCLC patients (stages
I-IV) and 631 age-, sex-, and BMI-matched controls.
RNA was extracted from 0.5 mL serum samples and
sequenced (avg. depth: 19.8 M 50-bp reads).

Orion employs a semi-supervised variational autoen-
coder (VAE) with two arms: one modeling oncRNA
expression and another processing annotated short
RNAs. Integrating classification and contrastive learn-
ing, Orion adjusts for library variability and improves
label prediction. It achieved an AUROC of 0.97 (95%
CI: 0.96-0.98) and 94% sensitivity (CI: 91%—96%) at 90%
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specificity in tenfold cross-validation. Sensitivity for stage
I and Tla-b tumors was 90% and 87%, respectively. On
an independent 20% validation set, Orion retained strong
performance (AUROC: 0.95; sensitivity: 92% at 90%
specificity), outperforming SVM, ElasticNet [149], and
XGBoost [150] by about 30% in the separate validation
dataset.

The use of multi-modal DL approaches that incorpo-
rate information from several sources, such as imaging
investigations, clinical records, and genomic sequences,
was highlighted in a review by D. Huang et al. (2024)
[151]. Using RNNs and CNNs, multimodal DL mod-
els integrate imaging, clinical, and liquid biopsy data
to improve early lung cancer detection and prognosis
(Table 4). Though lacking dataset specifics, the review
highlighted AI's potential in multi-omics-driven person-
alized care and its role in advancing precision oncology.
Viet et al. (2024) [152] examined the relationship between
heavy tobacco use (>10 pack years) and oral squamous
cell carcinoma (OSCC) and its potential for early cancer
diagnosis by integrating multi-omics data with DL tech-
niques. In order to differentiate heavy smokers from non-
smokers, researchers used The Cancer Genome Atlas
(TCGA) cohort (n=257) and an internal cohort (n=40)
to identify 13 differently expressed genes (IGHA2, SCGS,
RPL3L, NTRK1, CD96, BMP6, TFPI2, EFEMP2, RYR3,
DMTN, GPD2, BAALC, and FMO3) and three differen-
tially methylated genes (GPR15, GNGI12, and GDNF).
Significant disruptions in pathways linked to platelet
activation, cell adhesion, and extracellular matrix archi-
tecture were found by functional pathway studies, link-
ing these molecular changes to the pathophysiology of
OSCC in smokers. The Slideflow [153] pipeline was used
to handle 203 TCGA full-slide pictures that were stained
with H&E for histological evaluation. After being labeled
by skilled pathologists, the ROIs were separated into tiles
with 299x 299 pixels and then stained, normalized, and
enhanced. Using the Xception [154] architecture and pre-
trained weights from ImageNet, a DL model was trained
to predict the smoking status and 5-year mortality. Dur-
ing three-fold cross-validation, patient-level AUROCs for
smoking status predictions ranged 0.49-0.62, while for
mortality predictions, they ranged 0.48—-0.54. By combin-
ing clinical characteristics, discovered genetic markers,
and histological modeling, the combined method was
able to predict OSCC patients’ 5-year mortality with a
c-statistic of 0.9409. The potential of Al-driven methods
to improve cancer diagnoses and prognoses was further
highlighted by the use of DL for histology data [155].

Exosomes are tiny extracellular vesicles released by
cells. Because they include proteins, lipids, and nucleic
acids that are representative of the cell in which they
originate, they have become essential biomarkers in
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liquid biopsies for early cancer diagnoses. In order to
improve the sensitivity and specificity of exosome-based
cancer diagnoses, recent developments have combined
biosensor technologies with Al, specifically DL models
like CNNs [156]. The aptasensor employs a multi-probe
recognition approach, using methylene blue (MB)- and
ferrocene (Fc)-functionalized aptamers as signal units
and CD63, HER2, and EpCAM aptamers as capture
units. This arrangement improved exosome analysis for
screening and prognosis by distinguishing breast cancer
subtypes. Al-enhanced biosensors use DL algorithms
to assess volatile organic compounds (VOCs) in breath
samples, allowing for non-invasive diagnostics. One
example of this is the electrochemical gas sensor with a
graphene-Prussian blue layer designed for lung cancer
(LC) detection. Furthermore, by processing sensor data
using a strong neural network trained on PC biomarker
signatures, the MOOSY-32 electronic nose (EN) system
with Al improved non-invasive prostate cancer diagnoses
[157]. The scarcity of structured datasets in biosensing is
a serious obstacle to the broad use of DL methods, which
necessitate sizable datasets. Al-assisted biosensors were
combined with surface-enhanced infrared (IR) absorp-
tion (SEIRA) spectroscopy to help identify biomarkers
by dynamically monitoring protein interactions with
biomolecules including lipids and nucleic acids [158].
Al integration with spectroscopic methods (NMR, MS,
IR) enhances biomarker detection across diseases. DL-
powered biosensors and electronic olfaction/gustation
automate biochemical data analysis, enabling accurate,
expert-independent, point-of-care cancer diagnostics.

Al in cancer treatment and therapy optimization

The prospect of creating new anticancer treatments or at
least directing their development to reduce failure rates
and approval times, is one of the most exciting possi-
ble uses of Al in cancer. There are unmistakable indica-
tions that some neural network-type autoencoders, for
instance, can learn to represent a group of molecules
with particular activities and generate new structures
with related activities. Additionally, Al can be utilized
to precisely predict the mechanism of action of antican-
cer drugs, enhancing the likelihood of clinical success
and enabling precise preclinical and clinical positioning
(Table 5). Similarly, as the number of anticancer medica-
tions keeps increasing, predicting successful drug com-
binations has grown into a challenging combinatorial
problem that AI may be able to resolve [159].

Al in treatment planning and decision support

The use of Al to resolve medical problems has long been
hailed as a disruptive and near-future development. It has
a lengthy history that began in the 1970s when clinical
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decision support systems (CDSSs) needed human input
to choose qualities for these expert systems and supply
rules for decision-tree approaches [169]. CDSSs based on
Al emerged with the technical assistance of big data and
ML. CDSSs assess drug efficacy, product accessibility,
adverse reactions, patient financial status, and medical
insurance types by combining various medical records,
literature, and clinical research data. They then offer tai-
lored recommendations to assist clinicians in optimizing
treatment plans. Al's uses have grown beyond everyday
problem solving to include medical professional domains
like pathology diagnosis, image diagnosis, clinical treat-
ment decision-making, prognosis analysis, and new drug
screening (Table 5).

CDSSs based on Al technology have not fully achieved
human-computer interactions in clinical practice as
image-aided diagnosis systems because the ethics of
applying AI as an emerging technology in clinical deci-
sion-making have not been thoroughly established. The
Chinese Society of Clinical Oncology-Artificial Intel-
ligence (CSCO AlI), Watson for Oncology (WFO), and
other organizations are now using and promoting CDSSs
globally [170].

As the first commonly used CDSS in the field of can-
cer, WO [171] progressively gained global recognition in
the areas of gynecological, lung, colon, rectal, breast, and
stomach cancers. Medical personnel just need to enter a
case’s structured data according to the WFO system. The
technology will produce extremely consistent evidence
and the most conventional treatment strategy for the par-
ticular situation in less than a minute [108].

Al-based CDSSs simulate human reasoning to support
clinical decisions, using ML models like DL, SVMs, LR,
and ANNSs. Built on structured medical data, they reduce
errors, response times, and reliance on memory, enhanc-
ing safety, quality, and treatment efficacy.

Different from WFO, the CSCO Al system was estab-
lished under the CSCO platform using the CSCO data-
base and guidelines. The CSCO Al system mainly builds
different knowledge maps based on schemes in CSCO
guidelines [172]. When doctors search for relevant infor-
mation, it locates the knowledge map and outputs results
according to key information. Similarly, it is also updated
in real time with guidelines to ensure the timeliness of
the system.

Tempus is transforming precision oncology through Al
and ML-powered individualized therapy recommenda-
tions. By integrating imaging, clinical records, genomic
data, and patient histories [173]. Tempus applies ML and
DL (e.g., CNNs) to clinical and genomic data—includ-
ing a 100,000-patient database to identify cancer drivers
and predict treatment response. It supports personalized
therapy, though challenges like data quality, bias, and
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limited diversity remain [174]. Additionally, model inter-
pretability is an ongoing concern, as clinicians require
transparent, actionable outputs to guide patient care
decisions.

Flach et al. (2025) [175] explored the integration of
Paige Prostate Detect, an Al-assisted tool, into the clini-
cal workflow for prostate cancer (PC) diagnosis. The
study aimed to evaluate how Al can improve diagnostic
accuracy and efficiency during prostate biopsies. Using
deep learning models, including CNNs, Paige Pros-
tate Detect analyzes biopsy slides to identify malignant
regions and assist pathologists in detecting areas needing
further review.

The system was trained on thousands of annotated
biopsy samples [176]. enabling it to assess Gleason scores
and distinguish benign from malignant tissues. Pre-
liminary results suggest that Al support may enhance
diagnostic speed and accuracy, particularly for less
experienced pathologists or challenging cases. How-
ever, concerns remain regarding data variability, model
interpretability, and the need for large, diverse datasets
to ensure generalizability. Importantly, human oversight
remains critical to confirm Al-assisted diagnoses.

Al in drug discovery and repurposing
Al is transforming both patient care paradigms and drug
design strategies. Challenges in traditional drug develop-
ment—such as high costs, time constraints, poor target
delivery, and imprecise dosing have prompted the adop-
tion of Al-driven solutions [177]. Al surpasses conven-
tional computational methods by efficiently processing
complex datasets, accelerating drug candidate develop-
ment, and enabling cost-effective solutions. Advanced
ML, particularly deep learning, now predicts chemical
structures, in vivo/in vitro traits, and outcomes from
large datasets, expediting drug discovery without com-
promising efficacy (Table 6). Platforms like the quadratic
phenotypic optimization platform (QPOP) move beyond
mechanistic assumptions, tailoring drug combina-
tions to specific disease models or patient profiles using
empirical data [178]. Al also enhances patient stratifi-
cation, drug candidate design, and virtual patient mod-
eling. By leveraging sequencing data like NGS, Al aids
in identifying novel therapeutic targets and modeling
structure—activity relationships (SARs). Techniques such
as ANNs, DNNs, SVMs, GANSs, symbolic learning, and
meta-learning further optimize drug discovery. The inte-
gration of individual patient traits with Al-guided drug
prediction is driving a new era of precision medicine,
revolutionizing disease management and therapeutic
development [179].

By predicting protein structures at atomic resolution,
DeepMind’s DL-based AlphaFold2 has advanced drug
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development and cancer therapy repurposing. It speed up
precision medicine, aids target discovery, and improves
understanding of carcinogenic proteins. AlphaFold2
supports structure-based drug design, optimizes ligand
interactions, and reveals structures of unresolved pro-
teins [107, 117]. It helps repurpose drugs by identifying
new uses, alternate binding sites, and off-target effects.
Using ML, it employs transformer-based models, GANS,
RNNs, and CNNs. Unlike traditional methods, Alpha-
Fold2 is trained on large datasets from PDB, MSAs, and
structural templates, combining spatial and evolutionary
constraints via attention-based DNNSs. Its accuracy was
validated in CASP13 and CASP14, with GDT_TS scores
over 85% for medium/difficult proteins outperforming
older methods, especially for complex or low-homology
proteins. Leveraging HPC resources like GPUs/TPUs, it
enables large-scale predictions. AlphaFold2 has modeled
critical cancer proteins (e.g., oncogenic kinases, tumor
suppressors), aiding inhibitor design and mutation-
driven drug development. It also reveals cryptic sites and
protein-ligand interactions, enhancing hit-to-lead opti-
mization. Integrated with Al-driven molecular docking,
dynamics, and virtual screening, AlphaFold2’s capabili-
ties are further expanded using metagenomic databases,
broadening therapeutic target coverage. As a result, it
dramatically reduces drug development costs and time-
lines, enhancing targeted therapy precision.

A study conducted by Guha & Velegol (2023) [181]
introduced a DL method incorporating Shannon entropy
descriptors to improve molecular property prediction,
crucial for cancer drug development and repurpos-
ing. Their hybrid DL framework combined GCNs and
MLP-based DNNs, with kNN and RF as baselines. Shan-
non entropy-based features—derived from SMILES,
SMARTS, and InChiKey—improved descriptor richness
over MW-only inputs. Using 2705 of 3382 data points to
predict IC50 (pChEMBL format) for TFPI-targeting com-
pounds, performance metrics included MAE, RMSE, R?,
and MAPE. Results showed a 25.5% MAPE improvement
with entropy descriptors and 56.5% using SMILES-based
entropy. DL outperformed kNN, increasing prediction
accuracy and reducing experimental costs. Transformer-
GNN based DL models have also revolutionized de novo
molecule generation, especially for cancer therapies
[191, 192]. Companies like Atomwise and BenevolentAl
use Al to generate treatment candidates. BenevolentAl
applies knowledge graph-based approaches integrat-
ing literature, patents, trials, and omics to discover hid-
den drug-disease links. ML algorithms forecast disease
mechanisms, drug-target interactions, and optimal com-
binations. However, the role of these methods in preven-
tive strategies like chemoprevention remains to be fully
explored.
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The deep generative models used by Atomwise [193]
include transformer-based T5MolGe [194], Mamba, and
GPT-based frameworks such as (MolGPT [195], GPT-
ROPE [196], and GPT-GEGLU [197]. These models were
trained on benchmark datasets such as GuacaMol (1.6 M
molecules from ChEMBL 2428) and a carefully selected
subset of 171 tyrosine kinase inhibitors (TKIs) from
ChEMBL [198]. In addition to goal-directed generation
tasks and molecular optimization, the GuacaMol dataset
offers evaluation criteria including the created molecules’
novelty, uniqueness, and validity. Pytorch, Hugging Face
transformers, and Schrodinger Maestro 12.8 for accurate
docking were all part of the experimental setup.

Trained on GuacaMol, neural language models like
T5MolGe generated 24,700 SMILES for TKIs, filtered
down to 7,059 drug-like ligands based on lipophilicity
and MWs. DeepPurpose was used for virtual screening,
ranking ligands by predicted binding affinities (pKd) to
the L858R/T790M/C797S-mutant EGFR in NSCLC.
Performance was evaluated using RMSE, MAE, Frechet
ChemNet Distance (FCD), and KL divergence. GPT-
RoPE had the lowest FCD and highest validity (0.98),
while Mamba excelled in FCD and KL, showing effec-
tive non-conditional molecule generation. Benevolen-
tAl furthered this approach by integrating biological
insights with Al-based hypothesis generation to identify
novel therapies and repurpose approved drugs, support-
ing precision oncology via predictions of drug-protein
interactions. While further validation (toxicity, efficacy,
pharmacodynamics) is needed, transformer-based mod-
els like T5MolGe showed improved conditional genera-
tion over traditional DL approaches, supporting cancer
therapy repurposing. DeepDDS [199] is a DL model that
integrates drug chemical structures and gene expression
profiles from cancer cell lines to predict synergistic medi-
cation combinations for cancer therapy [182]. Trained on
12,415 drug-pair/cell-line combinations—36 drugs and
31 lines—it used Loewe scores to label pairs as synergis-
tic (>10) or antagonistic (<0). DeepDDS outperformed
DL and ML baselines in leave-one-out cross-validation
and showed a 16% improvement on an AstraZeneca test
set. It predicted novel synergies, such as lapatinib with
abemaciclib for A375 cells, supported by prior findings in
HER2-positive breast cancer [183]. DeepChem provides
implementations of related models, though its exact role
in DeepDDS is unspecified [182].

De novo drug design [200]. using generative AI/ML
avoids template dependency and enhances scalability.
RNNs trained on SMILES can learn molecular prop-
erties and propose drug-like molecules, though issues
like SMILES degeneracy and scaffold similarity persist.
To address these, Popova et al. (2018) [201] introduced
ReLeaSE, combining generative and predictive RNNs
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with reinforcement learning (RL) to design Janus kinase
2 inhibitors. However, limitations in SMILES expres-
siveness led to GNN-based frameworks like Deep-
GraphMolGen [202] and the Graph Convolutional Policy
Network (GCPN) [203], have proven to be more effec-
tive than SMILES strings in molecule creation since the
emergence of GNNs. In addition to traditional genera-
tive methods, de novo drug design has made extensive
use of AEs, which are built to learn effective coding of
input data, and generative adversarial networks (GANs)
[204], which are made up of two neural networks com-
peting with one another to produce new data. To build
tiny organic compounds, for instance, Putin et al. (2018)
[184] used the Reinforced Adversarial Neural Com-
puter (RANC), which developed unique structures that
matched predetermined chemical descriptors while pre-
serving structural integrity. The effectiveness of the GAN
framework was improved by later research, resulting in
variants like the Adversarial Threshold Neural Computer
(ATNC), Molecular GAN (MolGAN), Objective-Rein-
forced Generative Adversarial Networks (ORGANS), and
Objective-Reinforced Generative Adversarial Network
for Inverse-Design Chemistry (ORGANIC). Addition-
ally, ChemVAE is the first variational AE based on DL
to produce optimal drug-like compounds. Comparably,
compounds having specific characteristics, such as a
topological polar surface area, partition coefficient (log
P), and molecular weight, can be produced by the Con-
ditional Variational AE (VAE; CVAE). The produced
compounds showed strong inhibitory effects against tar-
geted disorders, and a hybrid VAE model was developed
to build candidates with anticipated potent anticancer
actions.

Aggarwal et al. (2021) [185] developed MolGPT, based
on GPT-style transformers, generates valid and diverse
molecular scaffolds. Advanced models like AAE, Latent-
GAN, druGAN, and GENTRL further enhance drug
design, with GENTRL completing DDR1 inhibitor dis-
covery in 21 days. These Al-driven systems vastly accel-
erate and de-risk traditional drug development. Y. Li
et al. (2023) [205], for instance, used Chemistry42 [206],
a well-known platform in this field, to create promis-
ing small-molecule inhibitors that target the putative
oncogene, CDKS, in order to control advanced solid
tumors and acute myeloid leukemia. The most effective
chemical exhibited significant antiproliferative effects
(IC5p=2.4 nM) and sub-nanomolar enzyme inhibitory
activity (IC;y=0.4 nM). These examples demonstrate
how data-driven AI molecular generation techniques can
create molecules with unique architectures, aiding in the
investigation of new therapeutic scaffolds.

To find currently available medications that could
be modified to act as RET inhibitors in the treatment
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of NSCLC, researchers [186] used a thorough compu-
tational approach. To predict and evaluate inhibitory
effects of possible drugs, the methodology used molecu-
lar docking, a density functional theory (DFT) analysis,
molecular dynamic simulations, and ML classifiers.

A dataset of 11,808 chemicals from the DrugBank
database was used in the investigation. To predict these
chemicals’ inhibitory activities against the RET protein,
ML classifiers were trained [187]. To evaluate their bind-
ing affinities to the RET kinase domain, the models’ top
candidates underwent additional precision docking. To
assess the compounds’ stability and chemical reactivity,
a DFT analysis was performed. Simulations of molecu-
lar dynamics were used to comprehend ligand—protein
interactions. To guarantee the durability of the connec-
tions, molecular dynamic simulations were used to com-
prehend how the ligand—protein complexes behaved over
time. The findings indicated the possibility of a number
of drugs as treatment agents for RET-positive NSCLC by
highlighting their strong inhibitory effects against RET.
Schrodinger [188]. has created sophisticated computa-
tional systems that use Al and ML to improve molecu-
lar docking and virtual screening, two steps in the drug
discovery process. Their method makes it possible to
efficiently screen large chemical libraries, which facili-
tates finding viable medication candidates. Although the
aforementioned study did not specifically make use of
Schrodinger’s tools, the techniques used are consistent
with what Schrodinger’s software package can perform.
Schrodinger’s platform, for example, efficiently screens
and rescores extremely vast chemical libraries by fusing
physics-based techniques with ML-powered active learn-
ing. High hit rates across a variety of target classes were
demonstrated for this method, indicating its promise for
finding new inhibitors for cancer treatments. In conclu-
sion, the work serves as an example of how combining
computer simulations and ML can make it easier to find
possible RET inhibitors for treating NSCLC. The tech-
niques used are representative of cutting-edge compu-
tational tools, such those created by Schrodinger, which
improve the efficacy and precision of oncology drug dis-
covery procedures.

The Computational Analysis of Novel Drug Opportu-
nities (CANDO) platform finds protein properties that
cause a drug’s action and uses ML and Network Phar-
macology to enhance drug repurposing. The approach
predicts the effectiveness of drugs against a variety of
diseases, including cancers, by integrating large-scale
proteome-based chemical interaction modeling [189].
The collection includes a thorough drug-protein inter-
action matrix that compares hundreds of human pro-
teins to thousands of FDA-approved and experimental
medications. To find important protein characteristics
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affecting medication interactions and therapeutic out-
comes, CANDO [190] uses proteochemometric mod-
eling with CNNs and RFs to map molecular fingerprints
to therapeutic outcomes. Multitarget modeling and fea-
ture extraction enhance prediction accuracy, validated
via cross-validation and retrospective comparisons with
clinical trials (Table 7). The results highlight the impact
of protein-ligand interactions on repurposing accuracy
and affirm ATI’s role in advancing multitarget drug discov-
ery in oncology.

Al in radiation therapy and surgical robotics

Radiation oncology is a kind of cancer treatment that
calls for interdisciplinary knowledge from fields such as
biology, physics, engineering, and medicine. CT simula-
tions, target registration/contouring, medical imaging,
diagnoses, prescriptions, treatment planning, treatment
quality assurance, and treatment delivery comprise the
standard radiotherapy workflow [220]. The radiation
workflow has grown more complex due to technological
advancements in recent decades, which have led to a sig-
nificant reliance on human-machine interactions (Fig. 5).
The extensive use of image-guided radiation therapy has
produced a vast volume of imaging data that require
quick analysis. However, temporal limits restrict people’
ability to study and analyze vast amounts of data. How-
ever, machines can be trained using Al algorithms to take
over many tedious tasks from humans, thereby enhanc-
ing the ability to deliver high-quality healthcare.. Many
Al-based techniques have been put forth to address
issues in many facets of radiotherapy since the advent of
DNN:s. Given the speed at which Al-assisted radiation is
developing, intelligent automation in a number of radio-
therapy-related areas could significantly increase the effi-
cacy and efficiency of radiotherapy in the future [58].

Surgical robotics and Al: a developing field

With the convergence of surgical techniques and Al the
field of robotics is one that is rapidly developing and has
the potential to completely transform surgery. With its
capacity for learning, reasoning, and decision-making,
AT has the potential to expand surgical robot capabilities
(Fig. 5), improving operating room efficiency, safety, and
precision [220].

Research demonstrates that collaboration between
medical professionals and ML algorithms enhances deci-
sion-making and reduces errors. For example, ML-based
lung cancer staging reached 93% accuracy, compared
to 72% with clinical guidelines alone. By integrating
diverse data sources, ML offers more precise and action-
able predictions than traditional methods. In surgery,
Al improves performance by reducing errors through
motion, energy, and force analysis, enabling automated
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and quantitative skill assessments. Tracking key move-
ment patterns aids in evaluating dexterity, supporting
ongoing reevaluation, credentialing, and real-time feed-
back during training. Ershad et al. [221] proposed evalu-
ating surgical skill by analyzing a surgeon’s "movement
style," based on the premise that expert surgeons perform
procedures with greater ease, efficiency, and coordina-
tion. They collected kinematic data from 14 surgeons of
varying experience, each performing two haptic feedback
tasks (ring, rail, suture) three times. 3D electromagnetic
tracking captured hand, wrist, and shoulder move-
ments during virtual simulations. Training videos were
crowdsourced and labeled based on behavioral traits,
and a classifier was trained accordingly. This approach
improved skill classification accuracy by 68.5% over raw
kinematic data. By focusing on qualitative, surgeon-spe-
cific motion traits (e.g., smoothness, calmness, synchro-
nization), this method reduces reliance on task-specific
surgical knowledge for skill assessment [222].
Cone-beam CT (CBCT)-based online adaptive radia-
tion therapy for postoperative esophageal cancer patients
incorporates DL and Al into radiation therapy to improve
treatment precision and flexibility [223]. In order to min-
imize toxicity and enhance treatment results, the study
made use of CBCT imaging to track anatomical changes
in real time and modify radiation doses accordingly
[207]. The dataset included pretreatment and daily CBCT
scans of postoperative esophageal cancer patients. Using
deformable image registration and DL-based segmenta-
tion, Al tracked tumor and organ shifts. Auto-contour-
ing with CNNs and U-Nets accurately delineated targets
and critical structures, easing clinician workload. DNNs
trained on prior CBCT data enabled effective image-
guided radiation adaptation. Al-powered online adaptive
radiotherapy improved dose conformity, raised tumor
control probability by 10%—-15%, and reduced organ-at-
risk doses by up to 25%, minimizing complications. These
results underscore Al’s potential to personalize and opti-
mize radiotherapy amid anatomical variability [223].
Robotic lung surgery using Al-assisted augmented real-
ity (AR) uses AR and Al to improve thoracic treatments’
accuracy, visualization, and decision-making [209]. To
improve surgical precision and efficiency, this study
employed DL-based segmentation, Al-driven imaging,
and 3D visualization. CNNs and transformer models
analyzed preoperative CT, MRI, and PET scans to gen-
erate detailed 3D reconstructions of lung structures,
tumors, and vessels. These models were integrated into
AR headsets or robotic consoles for real-time intraop-
erative guidance. Multi-modal inputs—annotated CTs,
surgical videos, and histopathology supported accurate
tissue differentiation and effective model training [224].
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Al in Cancer Treatment and Therapy Optimization
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Fig. 5 Al applications across cancer care workflows from treatment planning and drug recommendation to robotic surgery and drug discovery.
Al enhances decision support, enables personalized radiotherapy, assists in surgery, and predicts drug efficacy and resistance, thereby improving

precision, outcomes, and therapy development

The study showed that Al-assisted AR lowered the
risk of intraoperative complications by improving tumor
localization, vascular identification, and margin assess-
ment. According to clinical assessments, the AI-AR sys-
tem improved resection accuracy by 30% and cut down
on operating time by 25% compared to traditional tech-
niques [225]. Additionally, precise robotic-assisted tumor
removal, better suturing, and superior postoperative
results were made possible by incorporating AI-powered
robotic platforms, such as da Vinci surgical systems [226].
Al-driven dose planning in radiation therapy enhances
tumor targeting while reducing radiation exposure to
nearby healthy tissues. Based on patient-specific imag-
ing data, ML algorithms forecast tumor responses, opti-
mizing radiation regimens for individualized care [210].
Outcomes showed that Al-assisted operations resulted in
a 20% decrease in postoperative complications and bet-
ter recovery of lung function. In thoracic oncology, the
integration of Al, AR, and robotic surgery transformed
minimally invasive lung cancer treatment, opening the
door to safer, more effective, and customized surgical

procedures in radiation therapy and robotic-assisted lung
surgery [227].

Al-driven intraoperative metastasis detection and sur-
gical robotics integrate deep learning, computer vision,
and robotic-assisted surgery to enhance treatment pre-
cision. This study explored how real-time AI analysis of
intraoperative imaging (fluorescence, hyperspectral, MRI)
improved tumor and metastasis identification, guiding
surgical decisions and robotic actions [213]. AI models—
CNNs, transformers, GANs—processed histopathology,
radiology, and intraoperative fluorescence images, refin-
ing tumor detection and robotic execution. Trained on
over 50,000 annotated histopathology images and imaging
scans, these models supported precise, minimally inva-
sive procedures. Systems like the Al-enhanced da Vinci
robot use ML-based segmentation and haptic feedback to
improve surgical dexterity and minimize tissue damage. Al
enables real-time tumor localization using single or multi-
modal datasets, boosting intraoperative diagnosis and deci-
sion support. During Mohs surgery, a DL algorithm created
by Sendin-Martin et al. (2022) [214], demonstrated a DL
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model using ex vivo confocal imaging that rapidly detected
basal cell carcinoma with an AUROC of 0.94 in validation.
Furthermore, Al algorithms use genetic and radiomic data
to predict cancer metastases, constantly modifying surgical
techniques to reduce the probability of recurrence. Predic-
tive analytics powered by Al further improve the planning
of chemotherapy and radiation therapy, customizing care
according to the tumor biology of each patient [215].

Valente et al. [228] explored Al’s role in surgical train-
ing, focusing on robotic surgery and Al-based skill
assessment. Al enhances training by objectively evalu-
ating technique, precision, and decision-making during
simulations—areas where traditional assessments often
lack consistency. For example, Al can track hand move-
ments, timing, and instrument accuracy in simulated
laparoscopic tasks, benchmarking them against expert
standards. This enables educators to pinpoint specific
strengths and weaknesses. However, Al should comple-
ment, not replace, traditional evaluations, as it strug-
gles to assess qualitative skills like clinical judgment and
communication.

By learning from surgical movies, Al has been used in
surgical robotics to teach robots how to carry out sim-
ple surgical procedures. A study team fed a model hun-
dreds of movies taken by da Vinci robot wrist cameras
during surgery using ML architectures akin to ChatGPT
[217]. This method showed how AI can improve robotic
surgical systems and lower medical errors by enabling
the robot to lift tissue, stitch, and manage needles. How-
ever, current robotic systems can be imprecise and have
historically required a lot of coding to teach particular
tasks, which can be a time-consuming process. Beyond
its application in surgical settings, Al has also signifi-
cantly transformed other areas of cancer treatment,
such as radiation therapy workflow management [229].
For example, a graphical user interface within a com-
mercial treatment planning system, automated template
plan preparation, and AI models that predict optimal
fluence maps were all features of an in-house Al plat-
form for automated head and neck intensity-modulated
radiation therapy (IMRT) [230]. Clinical data were used
to validate this system, showing that Al-generated plans
reflected their design aims by offering a broad variety
of tradeoffs between target volumes and organs-at-risk
[218]. In a similar vein, a multistep integrated radia-
tion therapy workflow with AI support was developed
for patients with nasopharyngeal cancer, encompassing
processes from beam administration to CT scanning.
The workflow in a research with 120 patients took a
median of 23.2 min, and Al-generated outlines needed
only minor adjustments for high-risk clinical target
volumes and organs-at-risk. Remarkably, 92.3% of Al-
generated designs met dosimetric restrictions for the
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majority of organs-at-risk following initial optimization.
These Al-powered platforms present chances to reduce
the effort required by medical personnel, improve the
quality of plans, and cut down on treatment planning
times. The requirement for thorough validation, pos-
sible difficulties integrating with current clinical work-
flows, and guaranteeing the dependability and security
of Al-generated plans in various clinical contexts are
some of the drawbacks, though [219].

In contrast to open surgery, Al-based robotics offer
numerous benefits by enhancing surgical precision and
patient outcomes. Robotic arms provide superior stabil-
ity and dexterity compared to human hands, allowing for
more-accurate surgical techniques. Additionally, robotic-
assisted surgery is often less invasive, requiring smaller
incisions, which results in reduced trauma, faster recov-
ery times, and improved overall patient well-being [231].
Furthermore, these advanced systems incorporate cutting-
edge imaging technologies, such as 3D visualization, which
enhance a surgeon’s ability to navigate complex anatomical
structures with greater precision and confidence [232].

Al and patient management in oncology

Al in prognostic modeling and survival predictions

As genomic data become more standardized and analyti-
cal methods advance, AI holds great promise for develop-
ing reliable survival prediction algorithms. The complexity
and cost of genomic data analysis place a heavy burden
on clinicians, making diagnoses and treatment planning
dependent on potentially limited expertise. This can lead
to delayed or inaccurate decisions. Quantitative, data-
driven approaches are thus essential. Advanced ML and
DL methods provide targeted solutions, enabling clini-
cians to enhance treatment planning and improve patient
outcomes through innovative learning strategies [233].

A few sequential phases are involved in predicting
survival times for cancer patients: (1) preprocessing of
genomic data, (2) dimensionality reduction, (3) feature
selection, (4) model training, and (5) survival time predic-
tions. A variety of genomic data types, including mRNA,
DNA methylation, copy number alterations, and others,
are preprocessed during the training phase (Table 8). The
model is then trained using a variety of ML approaches
after these features either separately or in combination
are used to lower the dimensionality [234].

Using layered ANNs in conjunction with supervised or
unsupervised learning approaches, sophisticated DL algo-
rithms automatically integrate feature selection, dimen-
sionality reduction, and prediction into a single procedure.
DL models typically outperform conventional ML tech-
niques in forecasting survival times because they aim to
uncover hidden patterns and relationships. DL is becoming
increasingly well-liked as a potent technique for genomic
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data analysis due to the growing availability of genetic data
and sophisticated processing capabilities [243].

Current research being published frequently uses clini-
cal or imaging data to forecast survival times for cancer
patients. These approaches, however, might not always
yield precise forecasts and do not make full use of the
abundance of information found in genetic data. There
are not many reviews on survival predictions of cancer
patients using genomic data, they are not particularly
thorough, and there are no comparisons of various ML
models that can inspire future studies [244].

ML techniques for predicting cancer survival

Including genetic data enhances survival time predic-
tion but introduces high dimensionality, requiring care-
ful consideration. To address this, researchers often apply
dimensionality reduction or feature selection techniques.
Survival prediction models typically consist of two com-
ponents: the predictive model and dimensionality reduc-
tion. These methods fall into two categories—supervised
and unsupervised—with common approaches including
principal component analysis (PCA), factor analysis, and
non-negative matrix factorization (NMF) [245].

It is possible to reduce features using dimensionality
reduction or feature selection techniques. Furthermore,
new paradigms like the Multi-Cancer Multi-Omics Clini-
cal Dataset Laboratories (MCMOCL) [246] schemes,
which use federated learning, AE, and XGBoost tech-
niques to improve accuracy, that decrease processing
delays and improve security in heterogeneous cancer
clinics, have been introduced by recent developments
in digital healthcare. Other studies have investigated
hybrid cancer detection schemes that use State-Action-
Reward-State-Action (SARSA) reinforcement learning
[247] and multi-omics data processing in fog cloud net-
works with the goal of improving accuracy and decreas-
ing processing times in distributed clinical settings [248].
ML enables accurate survival prediction from complex
genomic data, using methods like SVM, AdaBoost, RE,
and decision trees. Key considerations include feature
selection to reduce noise, interpretability for clinical rel-
evance, and validation (e.g., cross-/external validation)
to ensure model robustness [249]. ML-based cancer sur-
vival prediction faces challenges like data heterogeneity,
bias, overfitting, and poor interpretability. Small, imbal-
anced datasets reduce generalizability. Addressing these
requires advanced feature engineering and regularization
to ensure clinical reliability [250].

Al in remote monitoring and digital health

Digital health, commonly known as "eHealth" or "health-
tech," represents the convergence of technology and
healthcare, and its importance in oncology is immense. In
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the realm of oncology, digital health involves a wide range
of technologies, strategies, and innovations aimed at
enhancing cancer prevention, diagnosis, treatment, and
management through digital means [251]. These techno-
logical solutions include, but are not restricted to, elec-
tronic health records (EHRs), mobile health applications,
wearable technology, telemedicine services, and analytics
powered by Al It has the potential to completely trans-
form oncology by providing cutting-edge solutions that
improve patient care, diagnoses, and treatments. With
developments in Al, VR, AR, predictive analytics, inter-
national cooperation, and changing legislation, the future
of digital health in oncology appears bright [252]. Digital
health enables early cancer detection through large-scale
analysis of genetics, lifestyle, and imaging data, support-
ing timely, personalized treatment. By tailoring therapies
to individual genetic profiles, it improves outcomes and
reduces side effects [253].

Digital health tools like wearables and telemedicine
enable remote monitoring, improving quality of life for
cancer patients and reducing hospital visits. The data col-
lected accelerates research, drug development, and treat-
ment optimization [254]. As a catalyst for innovation,
digital health holds the potential to transform global can-
cer care and significantly improve patient outcomes.

The Role of digital health in enhancing oncology outcomes
Enhanced diagnostics and personalized treatment
Integrating digital health technologies, including genomic
sequencing and liquid biopsies, has significantly advanced
cancer diagnostics by facilitating early detection. These
innovative tools enable the identification of malignan-
cies at their earliest stages, often before clinical symptoms
become apparent. Early detection is of paramount impor-
tance as it substantially increases the probability of suc-
cessful therapeutic outcomes. By diagnosing cancer at an
incipient stage, clinicians can implement timely and tar-
geted treatment strategies, improving survival rates and
enhancing patients’ overall quality of life [255].

Optimized care coordination and personalized treatment
approaches

Digital health plays a crucial role in developing indi-
vidualized cancer treatment plans by leveraging patient-
specific genetic and molecular data. Through advanced
analytics, healthcare providers can tailor therapeutic
interventions to align with the unique genetic profile of
each patient and the molecular characteristics of their
malignancy. This precision-based approach enables the
administration of treatments that directly target the bio-
logical mechanisms underlying the disease, thereby max-
imizing therapeutic efficacy while minimizing adverse
effects [256].
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Patient empowerment and enhanced care coordination
Integrating EHRs serves as a foundational element in
optimizing care coordination within oncology. EHRs
consolidate comprehensive patient data, including one’s
medical history, diagnoses, treatment regimens, pre-
scribed medications, and laboratory results. This central-
ized information repository ensures that all healthcare
providers involved in a patient’s care, including primary
care physicians, oncologists, radiologists, and other spe-
cialists, have immediate access to up-to-date medical
records. Consequently, streamlined communication and
collaboration among multidisciplinary teams reduce the
likelihood of medical errors and facilitate more-informed
clinical decision-making [257].

Telemedicine and remote consultations

Virtual healthcare technologies, including telemedicine,
have become essential in improving care coordination in
oncology. These digital solutions enable remote consulta-
tions, allowing oncologists and specialists to collaborate
irrespective of geographical constraints. By fostering
seamless interdisciplinary communication, telemedicine
facilitates timely expert consultations, expediting diagno-
ses and treatment initiation. Ultimately, these advance-
ments ensure that cancer patients receive prompt,
specialized care while mitigating delays associated with
geographical and logistical barriers [258].

Al for enhancing clinical trials and patient recruitment
Clinical trials remain central to safe and effective drug
development. With the rise of data-driven and person-
alized medicine, it’s essential for companies and regula-
tors to adopt tailored Al solutions that enhance research
speed and efficiency. Al is increasingly recognized
for its potential to support sustainable and optimized
drug development, with several applications now being
explored. To streamline drug research, robust AI mod-
els trained on appropriate datasets are needed to extract
actionable insights, especially as data availability grows in
personalized healthcare [259].

Clinical trial enrichment focuses on selecting patient
subsets where drug effects are more evident, rather
than testing efficacy in a general population. Includ-
ing non-responsive patients can dilute observed out-
comes. Ideally, genome-to-exposome profiling would
guide eligibility by confirming relevant biomarkers,
though such trials are rare and costly—particularly when
imaging is involved. Thus, biomarker testing should be
applied wherever feasible, even without full omics pro-
files. To uncover actionable biomarkers and subpopu-
lations, advanced analytics must integrate omics with
fragmented data from EMRs, imaging, and handwritten
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notes. Tools like NLP, OCR, and computer vision auto-
mate this extraction. Yet, the volume and inconsist-
ency of EMR data complicate analysis. AI models,
being data-agnostic, are well-suited to harmonize these
inputs, supporting trial enrichment and biomarker dis-
covery—though care is needed to prevent overfitting,
especially with class imbalance [260]. At least four molec-
ularly different forms of breast cancer have been iden-
tified through gene-expression profiling investigations
[235]. Several genetic tests have been developed to bet-
ter predict clinical outcomes and assess if the
addition of adjuvant chemotherapy to endocrine ther-
apy is worthwhile. Cardoso et al. (2016) [261] assessed
the clinical utility of the MammaPrint 70-gene expres-
sion signature for guiding adjuvant chemotherapy in
early-stage breast cancer. By stratifying patients into low-
or high-risk groups based on recurrence-associated gene
expression, MammaPrint offers genomic insights beyond
standard clinical-pathological criteria to reduce unnec-
essary chemotherapy. The phase 3 trial included 6,693
women, with genomic risk determined via MammaPrint
and clinical risk via a modified Adjuvant! Online tool.
Patients with matching risk profiles (low-low or high-
high) were treated accordingly, while discordant cases
were randomized. Among 1,550 women with high clini-
cal but low genomic risk, the 5-year survival rate without
chemotherapy was 94.7% (95% CI: 92.5%-96.2%), with
only a 1.5 percentage point drop in distant metastasis-
free survival compared to those who received chemo-
therapy. The study found that chemotherapy use could
be reduced by 46.2% in high clinical-risk patients when
guided by MammaPrint. This supports its role in ena-
bling more personalized treatment and reducing over-
treatment and side effects for low-genomic-risk patients.
Still, challenges include limited long-term data, cost and
accessibility barriers, and difficulty integrating genomic
testing into routine care. The modest decline in survival
also emphasizes the importance of careful patient selec-
tion and shared decision-making. In parallel, Kurtz et al.
(2019) introduced the Continuous Individualized Risk
Index (CIRI), a Bayesian model aimed at improving out-
come prediction in chronic lymphocytic leukemia (CLL)
patients undergoing targeted therapy [238]. The CIRI
model improved therapy response predictions by contin-
uously combining a number of prognostic markers, both
clinical and molecular, while responding to changes in a
patient’s state.

The methodology uses a Bayesian data analysis to simu-
late the link between different risk variables and progres-
sion-free survival (PFS). The CLL International Prognostic
Index (CLL-IPI) considers age, immunoglobulin heavy
chain (IGHV) mutation status, TP53 mutation or dele-
tion, staging information (Binet or Rai) [262], and serum
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2-microglobulin levels. There are also minimal residual
disease (MRD) levels mentioned, which offer informa-
tion about how well a treatment is working. Because the
Bayesian system continuously updates predictions based
on changing patient data throughout therapy, it enables
dynamic risk assessments.

Clinical trial data from 699 patients in the CLLS,
CLL10, and CLL11 studies were among the datasets
utilized to create the CIRI-CLL model. With a 23%-
30% improvement in the C-statistic for predicting PFS
over 1-5 years, the data demonstrated that CIRI per-
formed better than conventional risk models, such as
the CLL-IPI. CIRI successfully categorized patients
into different risk groups, which were connected with
various 3-year PFS rates (77.1% for low-risk, 54.5%
for intermediate-risk, and 9.4% for high-risk patients),
according to validation using the CLL14 trial cohort
(432 patients) [263]. The CIRI model offers a num-
ber of advantages, especially when it comes to cus-
tomizing treatment regimens. By more precisely
predicting which patients may benefit from particular
medications, it enables clinicians to tailor their recom-
mendations based on each patient’s unique risk profile,
increasing results [264]. Additionally, it facilitates con-
tinuous, customized patient risk monitoring as their
condition changes. Its dependence on clinical trial data,
which might not accurately reflect the overall popu-
lation of CLL patients, and the requirement for addi-
tional long-term validation to evaluate its efficacy in
standard clinical practice are drawbacks. Furthermore,
there can be difficulties incorporating this model into
current clinical workflows, especially in environments
with limited resources. Avanzo et al. [239] examined
radiomics and Al in cancer imaging, highlighting how
ML and DL models (e.g., RFs, SVMs, CNNs) extract
and analyze quantitative features to improve diagnosis
and prognosis. DL, particularly CNNs, outperformed
traditional ML in tasks like tumor segmentation and
classification, using datasets like TCIA [240]. However,
challenges remain, including the need for standardized
imaging protocols, larger datasets for DL training, and
validation across diverse patient populations. Despite
these limitations, the integration of ML and DL in
radiomics presents significant opportunities for more
accurate, personalized medical predictions, advancing
precision medicine in oncology and beyond.

Bakshi B et al,. [241] evaluated the impact of C the
Signs, an Al-powered clinical decision support tool,
on cancer diagnosis rates in primary care. The obser-
vational cohort study included nearly 420,000 patients
across 35 practices in eastern England (May 1, 2021
— March 31, 2022). The platform analyzed compre-
hensive patient data—including medical history, tests,
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treatments, medications, demographics, and risk fac-
tors—using Al to assess cancer risk and recommend
diagnostics or referrals. Practices using C the Signs saw
cancer detection rates (CDRs) rise from 58.7% (2020—
2021) to 66.0% (2021-2022), a 12.3% increase (p <0.05),
while non-using practices maintained a stable CDR of
58.4%. Notably, referral rates remained similar between
groups, suggesting improved detection did not lead to
over-referral. The findings underscore the potential of
Al tools in primary care to enhance early cancer detec-
tion and enable timely intervention, potentially reduc-
ing cancer-related mortality.

Movano created the AI chatbot EvieAl, which is
included into their Evie Ring, a smart ring with a well-
ness and health theme [242]. EvieAl, which was unveiled
at CES 2025, stands apart for being post-trained solely on
more than 100,000 peer-reviewed medical papers written
by medical experts. Because it cites data from reputable
sources like the Mayo Clinic, Harvard, and UCLA before
answering, this method guarantees that the information
it offers is accurate and reliable. By comparing its answers
to various reliable sources, Movano asserted that EvieAl
attained a 99% accuracy rate.

EvieAl is a conversational resource that focuses on
women’s health and seeks to assist users by providing
answers to questions about wellness and health with-
out making diagnostic recommendations. It is designed
to recognize when it lacks an answer and refrains from
responding to non-medical questions. For example,
when a user exhibits symptoms, EvieAI might probe
more deeply to gain a better understanding of the situ-
ation, but for more-serious problems, it will refer users
to the proper resources or medical experts. The design
of EvieAl places a strong emphasis on security and pri-
vacy. In order to protect user confidentiality, the platform
uses industry-standard encryption for data transfer and
storage, guarantees that discussions stay anonymous, and
periodically removes conversation data.

Challenges and limitations of Al in cancer care

The benefits for cancer treatments still appear far off,
despite the fact that Al applications in oncology continue
to hold enormous promise. There are still many signifi-
cant issues and concerns, such as the difficulty of stand-
ardizing, gathering, and managing data; the bias present
in training datasets; the absence of strong reporting
guidelines; the relative dearth of prospective clinical vali-
dation studies; difficulties implementing user designs and
workflows; antiquated legal and regulatory frameworks
surrounding Al; and the exponential growth of knowl-
edge and dynamic data.
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Collection and administration burdens associated

with data standardization

Unstructured, unique, and diverse methods are fre-
quently used to record and retain healthcare data. As a
result, Al algorithms created using data from one sys-
tem might not work as effectively when used with data
from another system. For Al to significantly influence
oncology, the percentage of EHR data that is ontology-
integrated will rise as a result of standardizing nomencla-
ture and data gathering. These issues are being addressed
by initiatives like the minimal Common Oncology Data
Elements (mCODE) initiative, but it will require a lot of
work to widely and reliably implement solutions [265].

Prejudiced training data

Pattern recognition is the main emphasis of Al as it
exists now. As a result, any pattern seen in the data used
to create the model will be carried over into predictions
that the model produces. There being consistent differ-
ences between the data used to construct the model and
the data to which the model is applied could be an issue
[266]. For instance, traditionally underrepresented popu-
lations (such as women, ethnic minorities, adolescents
and young adults, and the elderly) in a dataset may have
an impact on AI’s capacity to produce an accurate rec-
ommendation for these specific subgroups when clinical
trial data are used as the basis for the algorithm [266]. To
avoid this kind of bias, it is also critical to guarantee rep-
resentative sampling across time (for example, recently
treated versus previously treated patients) and data
sources (for example, medical record data from various
health systems). It can be concluded that inherent biases
that are frequently found in training datasets will need to
be addressed by Al-based solutions [267]. Computational
techniques are being developed to identify, comprehend,
and reduce prior bias in training datasets. Potential rem-
edies might include creating techniques to quantify the
bias of a given data collection and defining criteria that
define when bias is severe enough to raise doubts about
using that dataset as a target for deployment or for train-
ing algorithms [268].

Absence of prospective clinical validation and research
reporting guidelines

The lack of reporting guidelines for Al has led to a repro-
ducibility crisis, which may prevent Al from being widely
used. Lack of repeatability is a serious concern that could
be challenging to overcome because Al systems, particu-
larly DL techniques, are sensitive to minute details in data
that cannot be discovered. This issue might be resolved
by tightening reporting regulations on source codes
and training circumstances of algorithms, but openness
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might also cause issues with intellectual property and
competitive advantages for businesses that use Al [269].
While the broader background of Al studies in health-
care remains without common use reporting standards,
some specialties have started formal guidelines. For
example, for radiology, the CLAIM (Checklist for Artifi-
cial Intelligence in Medical Imaging) [270] guideline is an
all-encompassing framework to provide transparency in
study design, data handling, model development, evalu-
ation, and clinical deployment. Complementing these
organization-specific efforts, the FUTURE-AI [271]
framework, developed by 117 experts from 50 coun-
tries, outlines 30 best practices for trustworthy Al in
healthcare, based on six principles: fairness, universal-
ity, traceability, usability, robustness, and explainability.
It promotes standardized, safe, and clinician-ready Al
across the full development lifecycle, emphasizing the
need for domain-specific and cross-domain frameworks.

Challenges with workflows and user designs

The sociotechnical issues that arise in intricate adaptive
healthcare systems must be addressed for Al to be suc-
cessfully implemented. Al-based solutions must be easy
to use, add value for the user, and blend in smoothly with
a clinician’s workflow in order to promote broad adop-
tion. This is a bigger obstacle for some Al applications
than for others [272]. Key elements for adoption include
having output that is both explainable and actionable, as
well as being seamlessly integrated into clinical processes,
even though not all Al systems that analyze data must be
made available to doctors through interactive interfaces.
However, oncologists’ clinical decision support systems
(CDSSs) frequently need more engaging and informa-
tive interfaces [273]. The end-user must be able to see the
dynamic features of Al-based solutions to the degree that
they are multidimensional or adaptive. For instance, the
physician must be able to see these aspects if Al-based
CDSSs adapt over time to changes that take place dur-
ing therapy (Fig. 6) (such as anatomical and physiologi-
cal changes to the tumor and surrounding normal tissues
during radiation) [273].

Dynamic data and knowledge

Algorithms used in real-world oncology scenarios will
need to keep up with the exponential rise in cancer
research regardless of the regulatory framework in place.
Additionally, they will need to take into consideration
dynamic changes in source data that may be brought
about by new diagnostic technologies, upgrading of EHR
systems, expansion of data standards and ontologies, or
shifts in documentation and reimbursement rules. It is
necessary to develop techniques to periodically assess
algorithm accuracy or change algorithms when their
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Challenges and Limitations of Al in Cancer Care

Challenges and
Limitations

Core issues hindering Al
in cancer care

Fig. 6 Key challenges limiting Al adoption in cancer care: core issues include lack of data standardization, biased training data, and insufficient
clinical validation. These nested problems collectively hinder the reliability, generalizability, and clinical utility of Al-driven cancer diagnostics

and treatments

performance begins to deteriorate due to changes in
underlying data distributions. It might also be necessary
for some algorithms to incorporate an automatic expira-
tion feature, which would force reevaluation after a pre-
determined amount of time [274].

Future perspectives and emerging Al trends

in oncology

Thanks to advancements in big data analytics, Al, and
customized treatments, the healthcare industry is poised
for dramatic changes in the near future. These develop-
ments have enormous potential to optimize healthcare
delivery, and improve patient care and health outcomes.
However, in order to guarantee responsible and equitable

deployment, their incorporation into healthcare systems
also presents difficult ethical conundrums that need to
be carefully handled. This section looks at the state of
healthcare going forward, highlighting the significance of
cooperation between different stakeholders, the influence
of emerging technologies, and ethical issues. In order
to combine the multidisciplinary progress and issues
in AI oncology, we present an integrated conceptual
framework (Fig. 7). This framework identifies eight key
domains that are essential for taking Al from research to
practice with clinical efficacy, encompassing the entire
pipeline from data acquisition to post-deployment and
ethics.
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Fig. 7 Eight-point conceptual framework for translational Al in oncology. This framework delineates eight critical areas required for effective Al
deployment in cancer therapy: Data Acquisition, Preprocessing, Model Development, Internal/External Validation, Deployment & Monitoring, Ethical
Considerations, Regulatory Compliance, and Patient-Centric Design. Each one is defined by its prime purpose, primary challenges, and strategic
needs. All these dependent factors make up an end-to-end handbook for Al development toward safe, ethical, and equitable clinical release

in oncology

Al-driven innovations are poised to transform diag-
nosis and treatment, with algorithms already enhanc-
ing medical imaging, predicting disease progression,
and personalizing care. Al has demonstrated superior
early detection capabilities, particularly in cancer, and
is expected to further improve diagnostic precision
and individualized treatment as it evolves. Big data
analytics also holds promise for advancing healthcare
by uncovering insights into disease prevention, treat-
ment efficacy, and population health trends. However,
the use of large-scale patient data raises concerns about
privacy and security. Robust data protection measures
and legal frameworks emphasizing patient consent are
essential to ensure individuals retain control over their
data (Fig. 8). As Al, big data, and personalized medi-
cine continue to grow, healthcare professionals must
be trained not only in technical skills but also in ethical
considerations. Education should focus on best prac-
tices for integrating these technologies into care while

upholding ethical standards. By fostering a culture of
ethical awareness, healthcare systems can responsibly
leverage technology to improve patient outcomes [275].

Conclusions

Al is no longer a secondary adjunct in oncology—it is
becoming an essential, intrinsic component in advanc-
ing cancer therapeutics. By seamlessly integrating het-
erogeneous biomedical datasets into clinically actionable
insights, Al is transforming every stage of cancer care:
detection, diagnosis, treatment, follow-up, and research.
This review underscores both the vast promise and
complexity of embedding Al into oncology, spanning
imaging modalities (CT, MRI, PET, ultrasound), histo-
pathology, genomics, proteomics, and more. Al shifts
clinical decision-making from subjective estimations
to high-accuracy, algorithmic diagnostics that often
outperform conventional methods in speed, reproduc-
ibility, and precision. Beyond diagnosis, Al enables
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Fig. 8 The future landscape of Al in healthcare, focusing on four key domains: improving patient care through personalization, safeguarding
data privacy, addressing ethical dilemmas in Al use, and training healthcare professionals to effectively implement and govern new technologies

with responsibility and skill

personalized treatment planning, fine-tuned radiation
dosing, enhanced robot-assisted surgeries, and discovery
of novel therapeutic targets via data-intensive drug devel-
opment pipelines. On the patient management front,
Al-powered wearables and virtual assistants facilitate
real-time remote monitoring, boost treatment adher-
ence, and detect complications early. In clinical research,
Al optimizes study design, patient stratification, and
recruitment through real-time eligibility checks. Yet
despite these advancements, challenges remain in achiev-
ing universal clinical adoption. Concerns about algo-
rithm transparency, reproducibility, and interpretability
underscore the need to build trust among providers and
patients. Regulatory frameworks for Al in healthcare
are still evolving, and comprehensive governance mod-
els ensuring safety, efficacy, and innovation are urgently
needed. Critical data-related challenges—bias, inequity,
security, and interoperability—must be addressed, par-
ticularly as biased training data risks exacerbating exist-
ing health disparities across demographics and regions.
A multidisciplinary ecosystem—uniting AI research-
ers, oncologists, ethicists, regulators, and patient advo-
cates—is essential to create equitable, transparent, and
clinically valuable AI deployment standards. Medical
education must evolve to equip future healthcare profes-
sionals with the skills to responsibly apply Al in clinical
practice. Looking forward, AI's convergence with feder-
ated learning, edge computing, digital twins, and quan-
tum ML offers exciting potential for highly granular,
scalable, and personalized cancer care. Emerging syner-
gies between Al, synthetic biology, and de novo immu-
notherapy design point toward truly individualized

next-generation treatments. Ultimately, deploying trans-
parent, privacy-preserving, and ethics-focused Al models
will foster trusted healthcare systems. Al's true potential
lies not just in improving current practices but in reshap-
ing oncology into a predictive, preventive, participatory,
and precision-driven discipline. With a human-centered
approach and collaborative innovation, Al can usher in a
transformative era in cancer care—benefiting all patients
through smarter data use, outcome-driven strategies, and
inclusive clinical impact.
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