
Tiwari et al. Molecular Cancer          (2025) 24:159  
https://doi.org/10.1186/s12943-025-02369-9

REVIEW Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Molecular Cancer

Current AI technologies in cancer 
diagnostics and treatment
Ashutosh Tiwari1,2, Soumya Mishra3 and Tsung‑Rong Kuo1,4,5* 

Abstract 

Cancer continues to be a significant international health issue, which demands the invention of new methods 
for early detection, precise diagnoses, and personalized treatments. Artificial intelligence (AI) has rapidly become 
a groundbreaking component in the modern era of oncology, offering sophisticated tools across the range of can‑
cer care. In this review, we performed a systematic survey of the current status of AI technologies used for cancer 
diagnoses and therapeutic approaches. We discuss AI‑facilitated imaging diagnostics using a range of modalities 
such as computed tomography, magnetic resonance imaging, positron emission tomography, ultrasound, and digital 
pathology, highlighting the growing role of deep learning in detecting early‑stage cancers. We also explore applica‑
tions of AI in genomics and biomarker discovery, liquid biopsies, and non‑invasive diagnoses. In therapeutic interven‑
tions, AI‑based clinical decision support systems, individualized treatment planning, and AI‑facilitated drug discovery 
are transforming precision cancer therapies. The review also evaluates the effects of AI on radiation therapy, robotic 
surgery, and patient management, including survival predictions, remote monitoring, and AI‑facilitated clinical trials. 
Finally, we discuss important challenges such as data privacy, interpretability, and regulatory issues, and recom‑
mend future directions that involve the use of federated learning, synthetic biology, and quantum‑boosted AI. This 
review highlights the groundbreaking potential of AI to revolutionize cancer care by making diagnostics, treatments, 
and patient management more precise, efficient, and personalized.

Keywords Cancer, Artificial intelligence (AI), Machine learning (ML), Cancer diagnosis, Deep learning (DL), Precision 
oncology

*Correspondence:
Tsung‑Rong Kuo
trkuo@tmu.edu.tw
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12943-025-02369-9&domain=pdf


Page 2 of 41Tiwari et al. Molecular Cancer          (2025) 24:159 

Graphical Abstract
This graphical abstract schematically illustrates the progressive role of artificial intelligence in the cancer treatment 
continuum.

Introduction
Cancer, an illness that can affect people from all walks of 
life, is an intricate worldwide health concern that contin-
ues to require attention. Cancer is a disease that affects 
people regardless of age and causes suffering all around 
the world. Cancer is the second most prevalent cause of 
mortality worldwide, accounting for one in six deaths 
in 2020, according to the World Health Organization 
(WHO) [1]. Through a gradual accumulation of biologi-
cal and therapeutic knowledge which accelerated with 
the development of molecular-cell biology and genet-
ics in the second half of the twentieth century, mod-
ern medicine altered that perspective. Together with 
more-recent technological developments, this progress 
has made it possible to comprehend the disease in ways 
that were never possible before. The term "cancer" now 
encompasses hundreds of different kinds of diseases with 
similar basic characteristics. Beyond figuring out a par-
ticular cancer type’s genetic fingerprint and molecular 
composition, we now know how crucial the systemic and 
local tumor environment is to the disease’s progression 
and presentation. In recent years, interactions between 
the immune system and the immunological tumor 

microenvironment (TME) has particularly garnered 
notice [2, 3].

The role of artificial intelligence (AI) in modern oncology
AI refers to the wide area of computer science where algo-
rithms or machines are designed to mimic human intel-
lect. In machine learning (ML), a subfield of AI, computers 
carry out predetermined tasks and use statistical tech-
niques to find hidden patterns in data and enhance model 
performance [4]. Unlike standard ML, the ML subfield of 
deep learning (DL) does not rely on human-defined heu-
ristics to complete a task. Instead, DL uses the capability of 
multilayered neural networks to eliminate manual feature 
extraction labor and allow for the self-discovery of features 
that humans are unaware of or would not have expected 
[5, 6]. The major AI concepts are listed in Table  1. Elec-
tronic health record (HER) clinical notes, diagnostic and 
procedural reports, and other unstructured data are trans-
formed into discrete data elements using natural language 
processing (NLP) [7], an adjacent specialization within AI 
that aims to bridge human language with machine inter-
pretation [8]. Recent developments in the field have sig-
nificantly improved the technology’s efficacy, allowing 
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Table 1 Key AI concepts and architectures relevant to cancer diagnostics and research

Category Concept / Model Description & Relevance in Oncology References

Machine Learning (ML) Supervised Learning Learn from labeled data to make predictions. Used for clas‑
sifying tumors, predicting survival, etc

 [14]

Unsupervised Learning Discovers hidden patterns in unlabeled data; applied 
in clustering patients or tumor subtypes

Semi‑supervised Learning Combines a small amount of labeled data with a large 
unlabeled dataset, useful in medical imaging with limited 
annotations

Reinforcement Learning Learns by trial‑and‑error through feedback. Applied 
in treatment policy optimization

Feature Engineering The process of selecting or transforming variables 
to improve ML performance. Crucial for structured EHR 
and omics data

Classical ML Models Support Vector Machines (SVM) Effective in high‑dimensional spaces (e.g., gene expression 
data) for classification tasks

 [15]

Random Forests (RF) Ensemble of decision trees; robust against overfitting, 
used for biomarker prediction and classification

Logistic Regression (LR) Common baseline model for binary classification in sur‑
vival and risk prediction

k‑Nearest Neighbors (k‑NN) Instance‑based learner; used in similarity‑based drug repo‑
sitioning and subtype classification

Deep Learning (DL) Deep Neural Networks (DNNs) Multilayered feedforward networks for structured data, 
widely used in survival prediction

 [16–29]

Convolutional Neural Networks (CNNs) Specialized for image data (CT, MRI, histopathology); 
extracts spatial hierarchies in features

Recurrent Neural Networks (RNNs) Suited for sequential data (e.g., patient records); models 
time‑dependent health trajectories

Long Short‑Term Memory (LSTM) A type of RNN that captures long‑range dependencies; 
applied in EHR and time‑series prognosis

Gated Recurrent Units (GRUs) Efficient RNN variant; used in longitudinal cancer data 
modeling

Residual Networks (ResNet) DL architecture with skip connections; enables deeper 
networks for accurate image‑based classification. Exten‑
sively used in digital pathology

Vision Transformers (ViT) Transformer‑based models adapted for image analysis; 
increasingly used for WSI (whole‑slide image) classification

LongNet A transformer variant enabling processing of very long 
sequences (> 32 k tokens); suitable for high‑resolution 
pathology slide and multi‑modal data

U‑Net A CNN architecture designed for biomedical image 
segmentation; heavily used in tumor boundary and organ‑
at‑risk contouring

EfficientNet Optimized CNN with excellent performance at low 
computational cost; used in real‑time image analysis 
and mobile health apps

Graph Neural Networks (GNNs) Models relational data; used for protein–protein interac‑
tions, drug‑target graphs, and patient similarity networks

Autoencoders (AEs) Unsupervised models for data compression and denois‑
ing; used in omics dimensionality reduction

Variational Autoencoders (VAEs) A probabilistic extension of AEs used for generative tasks 
(e.g., molecule generation)

Generative Adversarial Networks (GANs) Generate realistic synthetic data (e.g., histopathology 
images, molecules). Applied in data augmentation 
and simulation

Adversarial Autoencoders (AAEs) Combines GAN and AE for structured representation learn‑
ing. Used in molecule and feature generation
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it to be used to automate the gathering and recording of 
patient outcomes, progression-free survival (PFS), and 
other tumor features associated with cancer [9]. The con-
struction of intricate databases and tumor registries may 
be facilitated by such automation, which recursively boosts 
the strength of generated models. NLP has been used to 
match clinical trials and detect possible adverse medica-
tion reactions, either alone or in conjunction with ML/DL 
approaches [10–12]. Furthermore, the use of AI for clinical 
decision-making is thought to improve the likelihood of 
early disease diagnosis and predictions using high-resolu-
tion imaging and new generation sequencing (NGS) meth-
ods. Creating sizable datasets and employing specialized 
bioinformatic tools have also resulted in the introduction 
of novel biomarkers for diagnosing cancer, the develop-
ment of novel tailored medications, and the delivery of 
potential treatment regimens [13].

Importance of AI in enhancing cancer diagnostics 
and treatment
Numerous studies have suggested that screening can 
increase early cancer detection and decrease mortal-
ity (Fig.  1). However, even in disease groups like breast 
cancer where screening programs are well-established, 
discussions about patient selection and risk-benefit trade-
offs continue, and concerns have been raised regarding a 
perceived "one size fits all" approach that is inconsistent 
with the goals of personalized medicine [46–48]. In the 
near future, AI algorithms may play a part in enhancing 
this procedure since they can analyze enormous volumes 
of multimodal data to find signals that would otherwise 
be hard to spot [49–51].

Table 1 (continued)

Category Concept / Model Description & Relevance in Oncology References

Transformers and Attention Models Transformer Core architecture using self‑attention; enables context‑
aware modeling. Used in NLP and multi‑modal integration 
in oncology

 [30–39]

BERT / BioBERT / ClinicalBERT Pre‑trained language models fine‑tuned on biomedical 
texts. Applied to EHR, radiology reports, and literature 
mining

GPT / GPT‑3 / GPT‑4 Autoregressive transformers used for medical Q&A, sum‑
marization, and even synthetic data generation

T5 / BioT5 Sequence‑to‑sequence transformers used in molecular‑to‑
text or image‑to‑report tasks

CLIP (Contrastive Language‑Image Pretraining) Joint vision–language model; maps images and text 
to a shared space. Applied in pathology image captioning 
and labeling

Learning Paradigms Transfer Learning Fine‑tuning pre‑trained models on domain‑specific data. 
Useful in small medical datasets

Federated Learning Decentralized training across institutions without data 
sharing; supports data privacy in multi‑center oncology 
studies

Self‑supervised Learning Learns from unlabeled data using pretext tasks. CHIEF 
and other models use this for pathology image feature 
extraction

Contrastive Learning Learns representations by comparing similar/dissimilar 
pairs. Enhances embedding quality for histology and radi‑
omics

Multi‑task Learning Simultaneous learning of related tasks. Improves generali‑
zation in cancer subtype classification and prognosis

Evaluation Metrics AUROC Measures model’s ability to discriminate between classes; 
critical in binary cancer detection tasks

 [40–45]

Accuracy, Sensitivity, Specificity Basic metrics used to assess model performance

Precision, Recall, F1‑score Balance false positives and negatives; important in imbal‑
anced cancer datasets

Kaplan–Meier, C‑index Used in survival models to evaluate time‑to‑event predic‑
tions

Confusion Matrix Summarizes classification outcomes; visual tool for error 
analysis
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Objectives and scope of this review
This article provides an in-depth review of AI’s role in 
modern cancer diagnostics, consolidating diverse can-
cer types and AI-facilitated diagnostic approaches into 
a cohesive overview. AI in oncology enhances diagnosis, 
treatment, and patient management by increasing pre-
cision, efficiency, and personalization. Leveraging ML, 
DL, and NLP, AI analyzes complex datasets—includ-
ing pathology reports, clinical records, genomic data, 
and medical images—to generate insights that support 
more accurate and timely clinical decisions. Its goals 
include early detection, personalized treatment plan-
ning, and streamlined care delivery to improve patient 
outcomes. This review spans both research-driven AI 
innovations and clinical applications, incorporating stud-
ies, benchmark models, commercial tools, and regula-
tory perspectives. It offers valuable insights for a wide 
audience, including oncologists, AI researchers, infor-
maticians, policymakers, and biomedical engineers. By 
framing AI as a bridge between predictive and precision 

oncology, this review supports strategic decision-making 
and encourages research that translates AI’s theoretical 
promise into real-world clinical impact.

AI in cancer diagnostics
AI is developing at an exponential rate. Clinical oncol-
ogy research is now more focused on comprehending the 
intricate biological architecture of cancer cell prolifera-
tion in order to decipher the molecular origins of cancer. 
In order to address the current situation of rising cancer 
mortality rates worldwide, it has also concentrated on 
processing millions of pertinent cases in big data and 
computational biology [52]. Furthermore, the use of AI in 
clinical decision-making is thought to improve the like-
lihood of early disease diagnoses and predictions using 
high-resolution imaging and NGS methods. By creating 
sizable datasets and employing specialized bioinformatic 
tools, it may also result in introducing novel biomarkers 
for diagnosing cancer, developing novel tailored medica-
tions, and delivering potential treatment regimens [13].

Fig. 1 AI’s diverse roles in cancer care, including enhanced diagnosis, personalized treatment, clinical decision support, biomarker discovery, 
and drug development each contributing to improved precision, speed, and outcomes in oncology through data‑driven innovations
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Imaging‑based AI diagnostics
AI, which is based on computational models and bio-
informatics-based algorithms, presents medical imag-
ing technology (MIT) with significant opportunities for 
advancement. It can identify biological alterations and 
aberrant cellular growth in the body [53]. In addition 
to being crucial in radiology, AI-assisted MIT has had a 
significant influence on neuroradiography and medical 
resonance imaging. Numerous dynamic applications of 
AI exist, including picture interpretation and categori-
zation, data organization, information storage, informa-
tion mining, and much more. AI is anticipated to greatly 
assist pathologists in enhancing diagnostic specificity 
because of its broad application in biomedical imaging 
technology [54].

Assessing tumors using traditional radiographic imag-
ing is primarily based on qualitative characteristics, such 
as tumor density, enhancement patterns, intra-tumoral 
cellular and acellular compositions (including blood, 
necrosis, and mineralization), tumor margin regularity, 
anatomical relationships with surrounding tissues, and 
impacts on these structures. It is possible to quantify a 
tumor’s size and shape using one- (1D), two- (2D), and 
3-dimensional (3D) analyses. All of these qualitative phe-
notypic descriptions are referred to as "semantic" traits. 
In contrast, a quickly developing area known as radiom-
ics is making it possible to digitally decode radiographic 
pictures into quantitative properties, such as size, shape, 
and textural pattern descriptors [55]. The automatic 
quantification of radiographic patterns in medical imag-
ing data has significantly progressed in recent years due 
to advancements in AI approaches. A subset of AI called 
DL is particularly promising since it automatically learns 
feature representations from sample photos and was 
demonstrated to perform on par with or even better 
than humans in task-specific applications [5, 56]. DL has 
shown relative robustness against noise in ground truth 
labels, among other things, even though it requires enor-
mous datasets for training [57].

In external-beam radiation therapy, tomographic 
imaging is vital for follow-up care, image guidance, and 
treatment planning. A CT simulation is typically per-
formed before treatment to image the targeted body 
part. Using these images, the tumor and nearby critical 
structures are identified to develop the optimal treat-
ment plan. For tumors near the diaphragm (e.g., liver 
or lower lung lobe), 4D CT scans may be used to track 
respiratory motion. MRI is often recommended for 
brain, paraspinal, head and neck, prostate cancers, and 
extremity sarcomas due to its superior soft-tissue con-
trast. MRI scans are fused with CT for tumor deline-
ation and organ-at-risk contouring, or used alone in 
MRI-only simulations with synthesized CT for planning 

and dose calculation. Unlike CT and MRI, PET reveals 
tumor metabolism and helps define dose-escalation 
volumes, especially in head and neck cancers [58].

AI’s automated abilities such as precise tumor volume 
tracking over time, simultaneous monitoring of multiple 
lesions, linking phenotypic nuances to genotypes, and 
predicting outcomes via comparisons with vast tumor 
databases—can enhance clinicians’ qualitative judgment. 
DL methods further improve generalizability across dis-
eases and imaging types, reduce noise sensitivity and 
errors, and may enable earlier treatments and significant 
clinical advances. While most studies remain preclini-
cal, the evolution of automated radiographic "radiomic" 
markers may ultimately shift cancer diagnostics by iden-
tifying actionable tumor abnormalities [59].

Today’s digital pathology faces three core challenges 
that must be addressed as digitization expands, and AI 
capabilities evolve, These include:

(1) improved efficiency, quality control, and image 
management in laboratory operations;

(2) clinical decision support, where algorithms are used 
to identify areas of interest or make specific diagno-
ses; and

(3) research and development, where new biomarkers 
[60], transcriptomics [61], and correlations between 
image characteristics and prognostics have been 
discovered [62].

The application of AI for digital pathology predates 
the introduction of whole-slide images (WSIs). Previous 
research showed that computer vision and AI methods 
can distinguish between diseases in pathology images. 
However, previously chosen regions of interest (ROIs) 
made up the majority of those image datasets. Because 
pathologists must first choose the areas of interest, this 
approach is extremely time-consuming and technically 
impractical to integrate into a laboratory’s clinical pro-
cess [63]. One major obstacle in healthcare systems is 
the early-stage identification of cancer, mainly because 
early stages of cancer are modest and frequently asymp-
tomatic. Early cancer detection is essential for effec-
tive treatment and higher survival rates, but there are a 
number of reasons that make this process complex and 
challenging. This investigation explores the complexities 
of these problems, including systemic, technological, and 
biological ones, and emphasizes how urgently diagnostic 
methodology innovations are needed.

Several AI models are being used for cancer detec-
tion imaging. These models include Prov-GigaPath [64], 
Owkin’s models [65], CHIEF [66], and Google Deepmind 
AI [67]. Conventional AI models are trained to do par-
ticular tasks, such detecting cancer cells or forecasting 
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treatment results. Nevertheless, these models require 
extensive training datasets, and their outcomes fre-
quently fluctuate depending on the tissue type or imaging 
technique (Fig. 2). Usually, they are modified from com-
puter vision models that were first created to recognize 
large objects. Self-supervised learning is a more-adapta-
ble technique that trains AI models using unlabeled data 
and was shown to perform better on a variety of tasks. 
However, despite recent developments in self-supervised 
learning models, the widespread application of AI mod-
els for cancer diagnosis is still hampered by their limited 
generalizability and narrow task emphasis.

Y. Ma et al. (2025) [68] introduced HistoPathExplorer, 
a web-based tool for evaluating AI in histopathology. 
It standardizes datasets and metrics, enabling users to 
explore model performance and clinical relevance. A 
highlighted study used MIL on 1,065 CRC WSIs from the 
MCO dataset to predict microsatellite instability (MSI), 
a key biomarker, by aggregating features from artifact-
free tiles via pretrained models [64]. With an AUROC of 
0.91, the MIL-based method demonstrated high predic-
tive accuracy, underscoring its potential as a non-invasive 
alternative to traditional biomarker testing in CRC. How-
ever, the study noted limitations, such as dependence 
on WSI quality and high computational demands, and 

suggested directions for future research to address these 
challenges.

Digital pathology has significantly advanced with the 
Prov-GigaPath concept in the context of cancer medi-
cal imaging. Prov-GigaPath is a foundation model cre-
ated jointly by Providence Health System, Microsoft, 
and the University of Washington. Its purpose is to ana-
lyze gigapixel whole-slide pathology images in order to 
improve cancer diagnoses and patient care [69]. To cap-
ture both local and global context, the model employs a 
two-tier architecture: a tile encoder processes 256 × 256 
pixel tiles from WSIs to extract local features, while a 
slide encoder aggregates these embeddings into compre-
hensive slide-level representations. This design enhances 
accuracy and efficiency by addressing the computational 
challenges posed by large WSIs. Leveraging Prov-Path, a 
large-scale dataset from the Providence Health Network 
with slides from over 30,000 patients and 31 major tis-
sue types, Prov-GigaPath achieved top-tier performance 
across 26 pathology tasks. The dataset is more than twice 
the size of TCGA in patient count and over five times 
larger in tile volume, providing a robust foundation for 
model training [70].

Prov-GigaPath outperformed current models like the 
Hierarchical Image Pyramid Transformer (HIPT) in 

Fig. 2 Whole slide images from different cancer tissues are processed using diverse AI models to enable key applications like cancer detection, 
subtyping, mutation and biomarker prediction, prognostic evaluation, and survival forecasting, advancing precision oncology through deep 
learning insights
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comparative studies, achieving state-of-the-art perfor-
mance across 26 digital pathology tasks, including muta-
tion predictions and cancer subtyping. Prov-GigaPath, 
for example, outperformed HIPT in mutation predic-
tion tasks, as evidenced by its superior AUROC and area 
under the precision-recall curve (AURPC) scores. There 
are various advantages to incorporating Prov-GigaPath 
into medical imaging processes [71]. Because of its 
capacity to interpret gigapixel WSIs, tissue samples can 
be thoroughly analyzed, leading to better cancer diagno-
ses and more-individualized treatment plans. Precision 
immunotherapy relies on the model’s ability to compre-
hend the tumor microenvironment (TME) by identify-
ing both local and global patterns in pathology slides. 
Additionally, as an open-weight model, Prov-GigaPath 
promotes openness and cooperation throughout the sci-
entific community, leading to improvements in digital 
pathology. But there are restrictions to take into account. 
The quality and diversity of the training data determine 
how well the model performs; biases or inconsistencies in 
the Prov-Path dataset may limit how broadly the model 
can be applied. Furthermore, processing gigapixel pho-
tographs requires a significant amount of CPU power, 
which could be problematic for organizations with weak 
infrastructure [70].

X. Wang et al. (2024) [66] designed a general-purpose 
ML framework called Clinical Histopathology Imaging 
Evaluation Foundation, or CHIEF, that can extract vari-
ous features from pathology images for cancer diagnoses 
and evaluation. This was done in order to address the 
limited generalizability of some AI models in analyz-
ing images from different populations and digitization 
methods. Using self-supervised learning and attention-
based integration, it was trained on 60,000 WSIs from 
14 cohorts and outperformed existing models in 11 can-
cers. CHIEF combines patch-level feature extraction with 
global representation learning, leveraging CTransPath 
and CLIP encoders. Validated on data from 24 hospitals, 
it demonstrated strong performance in prognosis, tumor 
origin detection, and cancer cell classification.

CHIEF outperformed ABMIL, CLAM, and DSMIL 
across 15 datasets and 11 cancers, with an AUROC of 
0.9397—10–14% higher. Its pixel-level predictions closely 
matched pathologist evaluations and identified key muta-
tions like TP53 and BAP1. Similarly, DeepMind’s CNN-
based system enhanced breast cancer screening, reducing 
false positives by 5.7% and false negatives by 9.4% using 
large mammogram datasets. Together, CHIEF and Prov-
GigaPath mark a shift from task-specific tools to scal-
able models excelling in prediction accuracy, subtyping, 
and biomarker detection—demonstrating the growing 
maturity of AI in cancer diagnostics [72]. The Lymph 
Node Assistant (LYNA), another product of Google’s 

AI research, analyzes histopathological slides to iden-
tify metastatic breast cancer. With a 99% accuracy rate 
in diagnosing metastatic cancer, LYNA outperformed 
human pathologists, particularly in spotting tiny metas-
tases, which are sometimes difficult to find [73].

Alternative AI models such as AI Initiatives at the Univer-
sity of Pittsburgh assist pathologists in diagnosing prostate 
cancer, and the University of Pittsburgh Medical Center 
(UPMC) has used AI technologies such as Galen Prostate™ 
from Ibex Medical Analytics. In order to detect cancer and 
evaluate characteristics like Gleason grades, perineural 
invasion, and tumor sizing. Galen Prostate uses DL algo-
rithms that have been trained on large datasets, including 
rare prostatic cancers. Northwell Health created iNav, an 
AI-powered diagnostic tool, to improve pancreatic cancer 
early diagnosis and treatment [74]. iNav detects patients 
with radiographic signs of pancreatic cancer through radi-
ology data analysis, enabling timely care. It uses an NLP 
classifier trained to recognize phrases in radiology reports 
linked to pancreatic cancer, scanning for language patterns 
and keywords tied to masses or lesions. When indicators 
appear, iNav flags them for further medical review. Given 
pancreatic cancer’s late detection and poor prognosis, iNav 
improves early detection by proactively analyzing imag-
ing. It cut the diagnosis-to-treatment time by 50%, tripled 
biospecimen study participation, and increased referrals 
to multidisciplinary clinics, improving care and research 
opportunities. An improved DL model called Dual-Domain 
Residual-based Optimization NEtwork (DRONE) [75] was 
developed. DRONE reduces artifacts and boosts image 
quality by integrating image and data domains (sinogram). It 
has three modules: the embedding module expands sparse 
sinogram data via an encoder-decoder network, enriching 
inputs; the refinement module improves initial images using 
a deep CNN; and the awareness module ensures consist-
ency between sinogram and reconstructed images through 
regularization, integrating outputs from the other two 
modules. DRONE addresses sparse-view CT challenges by 
combining outputs across modules. Its performance evalu-
ated using PSNR, SSIM, and RMSE surpassed conventional 
and other DL methods in reconstruction accuracy, feature 
retention, and edge clarity. The integration of AI and ML 
into cancer diagnostics has markedly improved accuracy, 
speed, and treatment personalization. AI excels at analyz-
ing complex datasets, leading to more accurate diagnoses 
and faster treatment initiation, which improves outcomes. It 
also supports personalized medicine by integrating genetic 
and clinical data to tailor treatments (Table 2). Developing 
AI/ML models for cancer detection involves key steps. Data 
collection requires diverse, high-quality datasets, includ-
ing imaging, genomics, and patient histories. Preprocessing 
ensures data consistency via normalization, augmentation, 
and annotation. Model selection is task-specific CNNs for 
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images, RNNs or LSTMs for sequential data, and decision 
trees for classification. Models are trained on large datasets 
and validated regularly to enhance accuracy. CNNs effec-
tively analyze images like MRIs and mammograms; LSTMs 
and RNNs process sequential clinical data; decision trees 
and RFs support diagnostic decision-making. These models 
have demonstrated strong performance in cancer detection.

AI in genomics and biomarker discovery
Advancements in proteomics, genomics, and combinato-
rial chemistry have led to numerous chemical and bio-
logical databases, greatly enhancing our understanding of 
cancer molecular biology. Clinically, this knowledge can 
transform cancer assessment and treatment. However, 
identifying therapeutically relevant insights from vast 
raw genetic data remains a challenge. Researchers have 
applied AI to identify cancer subgroups based on genes, 
mRNA, and miRNA clusters (Fig. 3). Using deep flexible 
neural forest models and stacked autoencoders (AEs), 
mRNA, miRNA, and DNA methylation data were inte-
grated to classify ovarian, breast cancers, and glioblasto-
mas into subtypes [92, 93].

Both supervised and unsupervised learning were 
applied to RNA, miRNA, and methylation data in hepa-
tocellular carcinoma (HCC), revealing survival-asso-
ciated consensus driver genes and two distinct patient 
subgroups. Multi-omics integration of proteomics and 
metabolomics data also stratified breast cancer patients 
into low- and high-risk groups. For subtyping, AEs and 
multiple-kernel frameworks were used [94]. AI plays a 
critical role in stratifying patients into prognostic and 
survival-based subgroups, enabling early cancer detec-
tion and progression forecasting. In neuroblastoma, gene 
expression and copy number alteration data helped clas-
sify subgroups [95]. For colorectal cancer (CRC) relapse 
prediction, integrated features included copy number 
variations, metabolomics, miRNA, and gene expression 
data [96]. he MRMR technique identified survival-related 
features in ovarian cancer [97]. Surviving breast cancer 
was also predicted using neural networks trained with 
DL [98]. The SALMON method combined multi-omics 
data and conventional biomarkers via eigengene matrices 
of co-expression networks to identify key genes and cyto-
bands [99]. Additionally, a kernel-based ML approach 
was used to assess the predictive value of transcriptomic, 
epigenomic, and genomic data for different tumors 
[100]. When clinical criteria are taken into account, this 
method has demonstrated notable gains, although its 
effectiveness varies depending on the type of cancer.

Technological advances have made it possible for soft-
ware developers and health researchers to closely work 
together to use multifactor analyses to enhance predic-
tions. These assessments are reported to be much more 

accurate than the actual numbers. Creating models that 
use AI algorithms for cancer detection and prognosis is 
becoming a higher priority for researchers. These tactics 
are currently being used to improve the accuracy of can-
cer prognoses that are diversified and recurrent, and pro-
mote survival [101].

In order to learn more about the molecular basis of the 
disease, clinical oncology research has primarily focused 
on fully understanding the mechanisms driving the pro-
liferation of cancer cells. Additionally, its goal is to use 
computational biology to manage enormous volumes of 
data from millions of relevant cases in order to combat 
rising worldwide mortality rates linked to cancer. Fur-
thermore, it is anticipated that the use of AI for clinical 
decision-making will improve the use of NGS and high-
resolution imaging for early illness identification and 
prediction [100]. AI has the potential to greatly increase 
the precision and promptness of disease detection and 
prognosis by utilizing these cutting-edge technologies 
[102]. AI has the potential to produce new biomark-
ers for cancer diagnosis. Building a system that is suffi-
ciently trained to correctly assess whether a patient will 
need immunotherapy is the aim of AI functionality. AI 
can estimate which immunotherapeutic medications 
will have the largest impact on a patient’s recovery and 
identify patients who need additional testing, such as 
whole genome spectroscopy. With the help of validated 
real-world case studies, AI is increasingly being used in 
the medical field with the goal of successfully overcom-
ing obstacles of correctly detecting various cancer types. 
A comprehensive description of the framework needed 
for AI to operate as planned is also included [103]. AI-
driven biomarker discovery uses sophisticated computer 
methods to examine large, intricate biological datasets. 
SVMs and RFs are two popular supervised learning tech-
niques that are used to precisely stratify patients by clas-
sifying them according to biomarker profiles [104]. These 
models can recognize important biological character-
istics linked to therapy responses or illness progression 
since they are trained on labeled datasets. Unsupervised 
learning approaches, on the other hand, such as cluster-
ing algorithms (like k-means and hierarchical cluster-
ing), reveal hidden patterns in genomic data and facilitate 
finding new biomarker groupings without predetermined 
labels [105]. Numerous AI models are used in genomics 
and biomarker discovery to process large-scale genomic 
datasets, find disease-associated biomarkers, and support 
personalized medicine (Table  3). These models include 
DeepVariant [106] (Google), AlphaFold [107], IBM Wat-
son for Oncology (WFO) [108], AI-Driven Liquid Biopsy 
Analysis, CancerSEEK AI [109], PRS-AI [110], and AI for 
Drug Response Prediction [111].
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Fig. 3 Integrative pipeline combining gene expression, variant analysis, and AI/ML modeling. It starts with RNA‑Seq‑based differential 
gene analysis, followed by morbid variant filtering, multimodal machine learning, and finally outputs predictive models, risk estimations, 
and disease‑specific visual associations for precision medicine
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Google’s DeepVariant, a deep CNN for detecting 
genetic variants in NGS data, transforms sequencing 
reads into pileup images and classifies them using the 
Inception architecture for accurate genotype predic-
tions. Evaluated on Genome in a Bottle benchmarks, its 
performance was assessed using precision, recall, and 
F1-score across diverse genomic contexts. DeepVariant 
outperformed traditional methods, especially in complex 
regions.

DeepMind’s AlphaFold predicts protein structures from 
amino acid sequences using deep learning, evolutionary 
data, and attention mechanisms. Its performance in CASP 
contests showed near-experimental accuracy, advancing 
structural biology and drug discovery. H. Sun et al. (2025) 
[117] showed AlphaFold 3’s role in identifying cancer bio-
markers in uveal melanomas via cytokine pathway analy-
sis, combining AlphaFold predictions with scRNA-Seq, 
docking, and enrichment studies. It effectively revealed 
treatment-relevant biomarkers. Somashekhar et al. (2017) 
[118, 119] assessed IBM Watson for Oncology (WFO) 
on 638 breast cancer cases, comparing its treatment sug-
gestions with Manipal Multidisciplinary Tumor Board 
(MMDT). WFO categorized recommendations as REC, 
FC, or NREC, using ML and NLP to mine medical data. 
Overall concordance was 73%, with 80% in non-meta-
static and 45% in metastatic cases. Triple-negative agree-
ment was 67.9%; HER2-negative, 35%. WFO generated 
recommendations in 40 s, compared to 12–20 min manu-
ally, aiding biomarker-based decision-making despite lim-
itations across cancer subtypes.

Jin et al. (2025) [120] explored computational techniques 
for early pancreatic cancer (PC) detection. ML models 
like RFs, SVMs, and DL were applied to complex data-
sets. NGS and GWAS helped identify key mutations (e.g., 
TP53, KRAS). AI-based CDSSs used Bayesian networks 
for personalized risk and treatment. Radiomics via CNNs 
and CEH-EUS imaging improved diagnosis, while liquid 
biopsies detected ctDNA, CTCs, miRNAs, and exosomes. 
Multi-omics integration enhanced precision medicine for 
early diagnosis and personalized care. Sud et  al. (2021) 
[121] examined polygenic risk scores (PRSs) for cancer 
susceptibility. PRSs aggregate multiple variants to estimate 
risk but vary in accuracy by cancer type. For PC, PRSs 
achieved an AUC of ~ 0.67, but clinical utility was limited 
in rare cancers due to minimal absolute risk increases. 
Combining PRSs with non-genetic risk factors yielded 
only slight gains in predictive power. The effectiveness of 
PRSs for guiding interventions like screening or preven-
tion remains uncertain and requires further study.

AI‑Powered liquid biopsies and early cancer detection
The identification and examination of liquid biopsy bio-
markers, such as circulating tumor cells (CTCs) and 

circulating tumor DNA (ct)DNA, have made tremen-
dous strides in the last 10  years. Their clinical utility in 
early cancer detection, disease monitoring, and therapy 
response evaluations have earned them acclaim (Fig. 4). 
The advent of liquid biopsies is beneficial since it pro-
vides a quick, real-time monitoring method that is mini-
mally invasive and may be an alternative to conventional 
tissue biopsies. In environments with limited resources, 
the optimal liquid biopsy platform should correctly 
reflect the molecular heterogeneity of the patient’s illness 
in addition to extracting more CTCs or ctDNA from a 
small sample volume [122].

In liquid biopsies, small amounts of biofluids are col-
lected to analyze components produced by cancer cells. 
Rich supplies of cancer biomarkers can be found in 
blood, saliva, urine, and cerebrospinal fluid. These bio-
markers can exist in free form or be linked to other fluid-
secreted structures. Liquid biopsies may make it easier 
to conduct dynamic studies of molecular or cellular bio-
markers. Accurate early-stage diagnosis and prognosis, 
tracking the course of the disease, evaluating the effec-
tiveness of certain treatments, and determining thera-
peutic goals for drug development are all made possible 
by liquid biopsies [123].

Additionally, liquid biopsies facilitate dynamic studies 
of cellular or molecular indicators. CTCs and ctDNA 
are two biofluid components that were shown in studies 
to be essential for early-stage cancer detection [124]. 
The primary tumor site releases components includ-
ing CTCs and ctDNA into the bloodstream, which aids 
in the spread of cancer. However, they are difficult to 
detect and evaluate due to their great degradability and 
low concentration (1–1000 CTCs/mL) [125]. A major 
obstacle to any separation and characterization strategy 
in cancer research is the physical similarity of CTCs to 
certain white blood cells (WBCs), phenotypic hetero-
geneity, and the epithelial-to-mesenchymal transition 
(EMT). The EMT is a process through which cancer 
cells pass to help them separate from the main tumor 
and enter the bloodstream [126]. EMT entails the 
acquisition of mesenchymal traits, such as the expres-
sion of the cytoskeletal protein, vimentin, and the loss 
of epithelial traits, such as downregulation of the adhe-
sion molecule, E-cadherin. Vimentin is linked to cancer 
cell invasiveness and macrophage-secreted interleukin 
(IL)-35 and was reported to be overexpressed in a vari-
ety of cancers, including breast cancer and extrahe-
patic cholangiocarcinomas. The transcription factors 
SNAI1 (also called SNAIL), SNAI2 (SLUG), TWIST1, 
and FOXC2 can regulate the EMT process, which is 
regulated by transforming growth factor (TGF)-β, Wnt, 
and Notch signaling [127, 128]. Single cancer cells or 
groups of tumor cells may be involved in this invasion 
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process. While intrinsic tumor hypoxia may trigger the 
intravasation of cell clusters, other alternative routes 
likely also play a role. TGF-β signaling can mediate the 
intravasation of single cells [129].

The Circulating Cell-free Genome Atlas (CCGA) pro-
ject is a premier example of a population-scale investiga-
tion that combines ML and cancer cell-free (cf)DNA [130]. 

It seeks to ascertain if ML can use genome-wide cfDNA 
sequencing data to detect and localize numerous can-
cer types with high specificity. Whole-genome bisulfite 
sequencing (WGBS) was reported to perform better than 
whole-genome sequencing (WGS) and targeted genome 
sequencing approaches in terms of genome-wide methyla-
tion patterns in the first CCGA sub-study [131]. Custom 

Fig. 4 AI‑powered liquid biopsy and genomic technologies for early cancer detection and personalized oncology. It highlights the use 
of circulating biomarkers (ctDNA, CTCs), next‑generation sequencing, and AI/ML models to identify cancer biomarkers and assess individual risk 
using multi‑omics data for precision treatment planning



Page 15 of 41Tiwari et al. Molecular Cancer          (2025) 24:159  

models identify methylation patterns per location as being 
comparable to those originating from a certain form of can-
cer in the second sub-study. Two logistic regression ensem-
bles carry out tissue of origin localization and additional 
cancer/non-cancer sample classification.

Building upon these ideas, J. Li et  al. (2021) [132]) 
created a unique method called DISMIR that uses low-
depth cfDNA sequencing data to provide sensitive and 
reliable cancer detection. This method combines plasma 
cfDNA data from WGBS and WGS. The "switching 
region" idea, a novel feature engineering technique used 
in DISMIR, efficiently identifies cancer-specific differ-
entially methylated regions that support individual read 
source predictions. The site of malignancy and tumor 
load can be predicted by mapping cfDNA reads back to 
their source. To determine the origin of each read and 
the malignancy status, DISMIR uses a DL model that 
incorporates DNA sequences and methylation states. 
This model does a good job of detecting hepatocellular 
cancer. Early cancer detection can be aided by cfDNA 
data and ML techniques. In order to help distinguish 
non-cancer controls and patients with early-stage CRC, 
Wan et al. (2019) [133] created computational methods 
that can identify correlations between cfDNA profiles 
and the cancer status. By counting the number of frag-
ments that overlapped each known protein-coding gene, 
they converted WGS data from cfDNA into pertinent 
input features. They then normalized the data to take 
feature-length, read depth, and sequence-content biases 
into account.

In order to improve the efficiency of models in making 
numerous clinically relevant decisions, future research 
in cfDNA analysis could also look into alternatives to the 
use of ML algorithms as models, such as ensemble and 
hybrid models, various neural network structures (such 
as CNNs, AEs, and RNNs), and training methods like 
transfer learning.

Mgbole (2025) [134]examined how CTCs, cfDNA, 
miRNAs, and protein biomarkers can be used to detect 
metastatic cancer using DL models, namely CNNs [135] 
and RNNs [136]. To guarantee the generalizability and 
robustness of the model, the study incorporated mul-
timodal data from extensive, multicenter datasets that 
included blood samples from various patient cohorts. 
The methodology included CNN-based image recogni-
tion for immunofluorescent CTC detection [137], sig-
nal processing techniques for preprocessing biomarker 
data, AEs and deep neural networks (DNNs) for feature 
extraction, and RNNs for analyzing temporal variations 
in cfDNA mutations for early metastasis predictions. 
In order to increase the predictive accuracy by utilizing 
spatial and sequential biomarker data, the study used an 
ensemble model technique that combined CNNs and 

transformer-based DL architectures and DL models to 
maximize classification performance. The use of transfer 
learning, which reduced data dependency and computa-
tional costs by fine-tuning pretrained models on sizable 
biology datasets for predicting metastatic cancer, was a 
crucial component of the work. The study outperformed 
conventional biomarker-based diagnostics by demon-
strating high sensitivity (> 90%) and specificity (> 95%) in 
detecting metastatic signals from blood samples [138]. 
According to the results, AI-driven liquid biopsy analy-
ses can lessen the need for invasive tissue biopsies, enable 
individualized treatment plans, and greatly increase early 
detection rates. In order to ensure that neural network 
decisions are in line with biological and clinical expecta-
tions [113], the study emphasized the use of explainable 
AI (XAI) tools like Grad-CAM [139] and SHAP (Shapley 
Additive Explanations) [140] for model transparency. To 
improve diagnostic precision and individualized cancer 
treatment, future prospects involve merging multi-omics 
datasets, which combine liquid biopsy AI models with 
genomics, transcriptomics, and proteomics (Table 4).

Klein et al. (2021) [147] evaluated GRAIL’s Galleri test, 
an AI/ML-powered multi-cancer early detection (MCED) 
tool analyzing cfDNA methylation patterns. Part of the 
CCGA study (NCT02889978), this large clinical valida-
tion sub-study included 4,077 participants—2,823 can-
cer patients and 1,254 confirmed non-cancer controls 
(1-year follow-up). The test demonstrated high specific-
ity (99.5%) and stage-dependent sensitivity: 16.8% (stage 
I), 40.4% (II), 77.0% (III), and 90.1% (IV), with an overall 
sensitivity of 51.5%. For 12 high-mortality cancers, stage 
I–III sensitivity reached 67.6%. In 88.7% of true posi-
tives, the test accurately identified the cancer signal ori-
gin, detecting over 50 cancer types. These results support 
Galleri’s potential as a blood-based complement to cur-
rent single-cancer screening methods, enhancing early 
detection across diverse cancers [148].

Karimzadeh et  al. (2024) [143] developed Orion, a 
multi-task generative AI model for analyzing circulating 
orphan non-coding RNAs (oncRNAs) to enhance liquid 
biopsy-based early detection of non-small cell lung can-
cer (NSCLC). The study used serum from 1,050 treat-
ment-naive individuals—419 NSCLC patients (stages 
I–IV) and 631 age-, sex-, and BMI-matched controls. 
RNA was extracted from 0.5  mL serum samples and 
sequenced (avg. depth: 19.8 M 50-bp reads).

Orion employs a semi-supervised variational autoen-
coder (VAE) with two arms: one modeling oncRNA 
expression and another processing annotated short 
RNAs. Integrating classification and contrastive learn-
ing, Orion adjusts for library variability and improves 
label prediction. It achieved an AUROC of 0.97 (95% 
CI: 0.96–0.98) and 94% sensitivity (CI: 91%–96%) at 90% 
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specificity in tenfold cross-validation. Sensitivity for stage 
I and T1a–b tumors was 90% and 87%, respectively. On 
an independent 20% validation set, Orion retained strong 
performance (AUROC: 0.95; sensitivity: 92% at 90% 
specificity), outperforming SVM, ElasticNet [149], and 
XGBoost [150] by about 30% in the separate validation 
dataset.

The use of multi-modal DL approaches that incorpo-
rate information from several sources, such as imaging 
investigations, clinical records, and genomic sequences, 
was highlighted in a review by D. Huang et  al. (2024) 
[151]. Using RNNs and CNNs, multimodal DL mod-
els integrate imaging, clinical, and liquid biopsy data 
to improve early lung cancer detection and prognosis 
(Table  4). Though lacking dataset specifics, the review 
highlighted AI’s potential in multi-omics-driven person-
alized care and its role in advancing precision oncology. 
Viet et al. (2024) [152] examined the relationship between 
heavy tobacco use (≥ 10 pack years) and oral squamous 
cell carcinoma (OSCC) and its potential for early cancer 
diagnosis by integrating multi-omics data with DL tech-
niques. In order to differentiate heavy smokers from non-
smokers, researchers used The Cancer Genome Atlas 
(TCGA) cohort (n = 257) and an internal cohort (n = 40) 
to identify 13 differently expressed genes (IGHA2, SCG5, 
RPL3L, NTRK1, CD96, BMP6, TFPI2, EFEMP2, RYR3, 
DMTN, GPD2, BAALC, and FMO3) and three differen-
tially methylated genes (GPR15, GNG12, and GDNF). 
Significant disruptions in pathways linked to platelet 
activation, cell adhesion, and extracellular matrix archi-
tecture were found by functional pathway studies, link-
ing these molecular changes to the pathophysiology of 
OSCC in smokers. The Slideflow [153] pipeline was used 
to handle 203 TCGA full-slide pictures that were stained 
with H&E for histological evaluation. After being labeled 
by skilled pathologists, the ROIs were separated into tiles 
with 299 × 299 pixels and then stained, normalized, and 
enhanced. Using the Xception [154] architecture and pre-
trained weights from ImageNet, a DL model was trained 
to predict the smoking status and 5-year mortality. Dur-
ing three-fold cross-validation, patient-level AUROCs for 
smoking status predictions ranged 0.49–0.62, while for 
mortality predictions, they ranged 0.48–0.54. By combin-
ing clinical characteristics, discovered genetic markers, 
and histological modeling, the combined method was 
able to predict OSCC patients’ 5-year mortality with a 
c-statistic of 0.9409. The potential of AI-driven methods 
to improve cancer diagnoses and prognoses was further 
highlighted by the use of DL for histology data [155].

Exosomes are tiny extracellular vesicles released by 
cells. Because they include proteins, lipids, and nucleic 
acids that are representative of the cell in which they 
originate, they have become essential biomarkers in 

liquid biopsies for early cancer diagnoses. In order to 
improve the sensitivity and specificity of exosome-based 
cancer diagnoses, recent developments have combined 
biosensor technologies with AI, specifically DL models 
like CNNs [156]. The aptasensor employs a multi-probe 
recognition approach, using methylene blue (MB)- and 
ferrocene (Fc)-functionalized aptamers as signal units 
and CD63, HER2, and EpCAM aptamers as capture 
units. This arrangement improved exosome analysis for 
screening and prognosis by distinguishing breast cancer 
subtypes. AI-enhanced biosensors use DL algorithms 
to assess volatile organic compounds (VOCs) in breath 
samples, allowing for non-invasive diagnostics. One 
example of this is the electrochemical gas sensor with a 
graphene-Prussian blue layer designed for lung cancer 
(LC) detection. Furthermore, by processing sensor data 
using a strong neural network trained on PC biomarker 
signatures, the MOOSY-32 electronic nose (EN) system 
with AI improved non-invasive prostate cancer diagnoses 
[157]. The scarcity of structured datasets in biosensing is 
a serious obstacle to the broad use of DL methods, which 
necessitate sizable datasets. AI-assisted biosensors were 
combined with surface-enhanced infrared (IR) absorp-
tion (SEIRA) spectroscopy to help identify biomarkers 
by dynamically monitoring protein interactions with 
biomolecules including lipids and nucleic acids [158]. 
AI integration with spectroscopic methods (NMR, MS, 
IR) enhances biomarker detection across diseases. DL-
powered biosensors and electronic olfaction/gustation 
automate biochemical data analysis, enabling accurate, 
expert-independent, point-of-care cancer diagnostics.

AI in cancer treatment and therapy optimization
The prospect of creating new anticancer treatments or at 
least directing their development to reduce failure rates 
and approval times, is one of the most exciting possi-
ble uses of AI in cancer. There are unmistakable indica-
tions that some neural network-type autoencoders, for 
instance, can learn to represent a group of molecules 
with particular activities and generate new structures 
with related activities. Additionally, AI can be utilized 
to precisely predict the mechanism of action of antican-
cer drugs, enhancing the likelihood of clinical success 
and enabling precise preclinical and clinical positioning 
(Table 5). Similarly, as the number of anticancer medica-
tions keeps increasing, predicting successful drug com-
binations has grown into a challenging combinatorial 
problem that AI may be able to resolve [159].

AI in treatment planning and decision support
The use of AI to resolve medical problems has long been 
hailed as a disruptive and near-future development. It has 
a lengthy history that began in the 1970s when clinical 
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decision support systems (CDSSs) needed human input 
to choose qualities for these expert systems and supply 
rules for decision-tree approaches [169]. CDSSs based on 
AI emerged with the technical assistance of big data and 
ML. CDSSs assess drug efficacy, product accessibility, 
adverse reactions, patient financial status, and medical 
insurance types by combining various medical records, 
literature, and clinical research data. They then offer tai-
lored recommendations to assist clinicians in optimizing 
treatment plans. AI’s uses have grown beyond everyday 
problem solving to include medical professional domains 
like pathology diagnosis, image diagnosis, clinical treat-
ment decision-making, prognosis analysis, and new drug 
screening (Table 5).

CDSSs based on AI technology have not fully achieved 
human–computer interactions in clinical practice as 
image-aided diagnosis systems because the ethics of 
applying AI as an emerging technology in clinical deci-
sion-making have not been thoroughly established. The 
Chinese Society of Clinical Oncology-Artificial Intel-
ligence (CSCO AI), Watson for Oncology (WFO), and 
other organizations are now using and promoting CDSSs 
globally [170].

As the first commonly used CDSS in the field of can-
cer, WO [171] progressively gained global recognition in 
the areas of gynecological, lung, colon, rectal, breast, and 
stomach cancers. Medical personnel just need to enter a 
case’s structured data according to the WFO system. The 
technology will produce extremely consistent evidence 
and the most conventional treatment strategy for the par-
ticular situation in less than a minute [108].

AI-based CDSSs simulate human reasoning to support 
clinical decisions, using ML models like DL, SVMs, LR, 
and ANNs. Built on structured medical data, they reduce 
errors, response times, and reliance on memory, enhanc-
ing safety, quality, and treatment efficacy.

Different from WFO, the CSCO AI system was estab-
lished under the CSCO platform using the CSCO data-
base and guidelines. The CSCO AI system mainly builds 
different knowledge maps based on schemes in CSCO 
guidelines [172]. When doctors search for relevant infor-
mation, it locates the knowledge map and outputs results 
according to key information. Similarly, it is also updated 
in real time with guidelines to ensure the timeliness of 
the system.

Tempus is transforming precision oncology through AI 
and ML-powered individualized therapy recommenda-
tions. By integrating imaging, clinical records, genomic 
data, and patient histories [173]. Tempus applies ML and 
DL (e.g., CNNs) to clinical and genomic data—includ-
ing a 100,000-patient database to identify cancer drivers 
and predict treatment response. It supports personalized 
therapy, though challenges like data quality, bias, and 

limited diversity remain [174]. Additionally, model inter-
pretability is an ongoing concern, as clinicians require 
transparent, actionable outputs to guide patient care 
decisions.

Flach et  al. (2025) [175] explored the integration of 
Paige Prostate Detect, an AI-assisted tool, into the clini-
cal workflow for prostate cancer (PC) diagnosis. The 
study aimed to evaluate how AI can improve diagnostic 
accuracy and efficiency during prostate biopsies. Using 
deep learning models, including CNNs, Paige Pros-
tate Detect analyzes biopsy slides to identify malignant 
regions and assist pathologists in detecting areas needing 
further review.

The system was trained on thousands of annotated 
biopsy samples [176]. enabling it to assess Gleason scores 
and distinguish benign from malignant tissues. Pre-
liminary results suggest that AI support may enhance 
diagnostic speed and accuracy, particularly for less 
experienced pathologists or challenging cases. How-
ever, concerns remain regarding data variability, model 
interpretability, and the need for large, diverse datasets 
to ensure generalizability. Importantly, human oversight 
remains critical to confirm AI-assisted diagnoses.

AI in drug discovery and repurposing
AI is transforming both patient care paradigms and drug 
design strategies. Challenges in traditional drug develop-
ment—such as high costs, time constraints, poor target 
delivery, and imprecise dosing have prompted the adop-
tion of AI-driven solutions [177]. AI surpasses conven-
tional computational methods by efficiently processing 
complex datasets, accelerating drug candidate develop-
ment, and enabling cost-effective solutions. Advanced 
ML, particularly deep learning, now predicts chemical 
structures, in  vivo/in vitro traits, and outcomes from 
large datasets, expediting drug discovery without com-
promising efficacy (Table 6). Platforms like the quadratic 
phenotypic optimization platform (QPOP) move beyond 
mechanistic assumptions, tailoring drug combina-
tions to specific disease models or patient profiles using 
empirical data [178]. AI also enhances patient stratifi-
cation, drug candidate design, and virtual patient mod-
eling. By leveraging sequencing data like NGS, AI aids 
in identifying novel therapeutic targets and modeling 
structure–activity relationships (SARs). Techniques such 
as ANNs, DNNs, SVMs, GANs, symbolic learning, and 
meta-learning further optimize drug discovery. The inte-
gration of individual patient traits with AI-guided drug 
prediction is driving a new era of precision medicine, 
revolutionizing disease management and therapeutic 
development [179].

By predicting protein structures at atomic resolution, 
DeepMind’s DL-based AlphaFold2 has advanced drug 
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development and cancer therapy repurposing. It speed up 
precision medicine, aids target discovery, and improves 
understanding of carcinogenic proteins. AlphaFold2 
supports structure-based drug design, optimizes ligand 
interactions, and reveals structures of unresolved pro-
teins [107, 117]. It helps repurpose drugs by identifying 
new uses, alternate binding sites, and off-target effects. 
Using ML, it employs transformer-based models, GANs, 
RNNs, and CNNs. Unlike traditional methods, Alpha-
Fold2 is trained on large datasets from PDB, MSAs, and 
structural templates, combining spatial and evolutionary 
constraints via attention-based DNNs. Its accuracy was 
validated in CASP13 and CASP14, with GDT_TS scores 
over 85% for medium/difficult proteins outperforming 
older methods, especially for complex or low-homology 
proteins. Leveraging HPC resources like GPUs/TPUs, it 
enables large-scale predictions. AlphaFold2 has modeled 
critical cancer proteins (e.g., oncogenic kinases, tumor 
suppressors), aiding inhibitor design and mutation-
driven drug development. It also reveals cryptic sites and 
protein–ligand interactions, enhancing hit-to-lead opti-
mization. Integrated with AI-driven molecular docking, 
dynamics, and virtual screening, AlphaFold2’s capabili-
ties are further expanded using metagenomic databases, 
broadening therapeutic target coverage. As a result, it 
dramatically reduces drug development costs and time-
lines, enhancing targeted therapy precision.

A study conducted by Guha & Velegol (2023) [181] 
introduced a DL method incorporating Shannon entropy 
descriptors to improve molecular property prediction, 
crucial for cancer drug development and repurpos-
ing. Their hybrid DL framework combined GCNs and 
MLP-based DNNs, with kNN and RF as baselines. Shan-
non entropy-based features—derived from SMILES, 
SMARTS, and InChiKey—improved descriptor richness 
over MW-only inputs. Using 2705 of 3382 data points to 
predict IC50 (pChEMBL format) for TFPI-targeting com-
pounds, performance metrics included MAE, RMSE,  R2, 
and MAPE. Results showed a 25.5% MAPE improvement 
with entropy descriptors and 56.5% using SMILES-based 
entropy. DL outperformed kNN, increasing prediction 
accuracy and reducing experimental costs. Transformer-
GNN based DL models have also revolutionized de novo 
molecule generation, especially for cancer therapies 
[191, 192]. Companies like Atomwise and BenevolentAI 
use AI to generate treatment candidates. BenevolentAI 
applies knowledge graph-based approaches integrat-
ing literature, patents, trials, and omics to discover hid-
den drug-disease links. ML algorithms forecast disease 
mechanisms, drug-target interactions, and optimal com-
binations. However, the role of these methods in preven-
tive strategies like chemoprevention remains to be fully 
explored.

The deep generative models used by Atomwise [193] 
include transformer-based T5MolGe [194], Mamba, and 
GPT-based frameworks such as (MolGPT [195], GPT-
ROPE [196], and GPT-GEGLU [197]. These models were 
trained on benchmark datasets such as GuacaMol (1.6 M 
molecules from ChEMBL 2428) and a carefully selected 
subset of 171 tyrosine kinase inhibitors (TKIs) from 
ChEMBL [198]. In addition to goal-directed generation 
tasks and molecular optimization, the GuacaMol dataset 
offers evaluation criteria including the created molecules’ 
novelty, uniqueness, and validity. Pytorch, Hugging Face 
transformers, and Schrödinger Maestro 12.8 for accurate 
docking were all part of the experimental setup.

Trained on GuacaMol, neural language models like 
T5MolGe generated 24,700 SMILES for TKIs, filtered 
down to 7,059 drug-like ligands based on lipophilicity 
and MWs. DeepPurpose was used for virtual screening, 
ranking ligands by predicted binding affinities (pKd) to 
the L858R/T790M/C797S-mutant EGFR in NSCLC. 
Performance was evaluated using RMSE, MAE, Frechet 
ChemNet Distance (FCD), and KL divergence. GPT-
RoPE had the lowest FCD and highest validity (0.98), 
while Mamba excelled in FCD and KL, showing effec-
tive non-conditional molecule generation. Benevolen-
tAI furthered this approach by integrating biological 
insights with AI-based hypothesis generation to identify 
novel therapies and repurpose approved drugs, support-
ing precision oncology via predictions of drug-protein 
interactions. While further validation (toxicity, efficacy, 
pharmacodynamics) is needed, transformer-based mod-
els like T5MolGe showed improved conditional genera-
tion over traditional DL approaches, supporting cancer 
therapy repurposing. DeepDDS [199] is a DL model that 
integrates drug chemical structures and gene expression 
profiles from cancer cell lines to predict synergistic medi-
cation combinations for cancer therapy [182]. Trained on 
12,415 drug-pair/cell-line combinations—36 drugs and 
31 lines—it used Loewe scores to label pairs as synergis-
tic (> 10) or antagonistic (< 0). DeepDDS outperformed 
DL and ML baselines in leave-one-out cross-validation 
and showed a 16% improvement on an AstraZeneca test 
set. It predicted novel synergies, such as lapatinib with 
abemaciclib for A375 cells, supported by prior findings in 
HER2-positive breast cancer [183]. DeepChem provides 
implementations of related models, though its exact role 
in DeepDDS is unspecified [182].

De novo drug design [200]. using generative AI/ML 
avoids template dependency and enhances scalability. 
RNNs trained on SMILES can learn molecular prop-
erties and propose drug-like molecules, though issues 
like SMILES degeneracy and scaffold similarity persist. 
To address these, Popova et  al. (2018) [201] introduced 
ReLeaSE, combining generative and predictive RNNs 
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with reinforcement learning (RL) to design Janus kinase 
2 inhibitors. However, limitations in SMILES expres-
siveness led to GNN-based frameworks like Deep-
GraphMolGen [202] and the Graph Convolutional Policy 
Network (GCPN) [203], have proven to be more effec-
tive than SMILES strings in molecule creation since the 
emergence of GNNs. In addition to traditional genera-
tive methods, de novo drug design has made extensive 
use of AEs, which are built to learn effective coding of 
input data, and generative adversarial networks (GANs) 
[204], which are made up of two neural networks com-
peting with one another to produce new data. To build 
tiny organic compounds, for instance, Putin et al. (2018) 
[184] used the Reinforced Adversarial Neural Com-
puter (RANC), which developed unique structures that 
matched predetermined chemical descriptors while pre-
serving structural integrity. The effectiveness of the GAN 
framework was improved by later research, resulting in 
variants like the Adversarial Threshold Neural Computer 
(ATNC), Molecular GAN (MolGAN), Objective-Rein-
forced Generative Adversarial Networks (ORGANs), and 
Objective-Reinforced Generative Adversarial Network 
for Inverse-Design Chemistry (ORGANIC). Addition-
ally, ChemVAE is the first variational AE based on DL 
to produce optimal drug-like compounds. Comparably, 
compounds having specific characteristics, such as a 
topological polar surface area, partition coefficient (log 
P), and molecular weight, can be produced by the Con-
ditional Variational AE (VAE; CVAE). The produced 
compounds showed strong inhibitory effects against tar-
geted disorders, and a hybrid VAE model was developed 
to build candidates with anticipated potent anticancer 
actions.

Aggarwal et al. (2021) [185] developed MolGPT, based 
on GPT-style transformers, generates valid and diverse 
molecular scaffolds. Advanced models like AAE, Latent-
GAN, druGAN, and GENTRL further enhance drug 
design, with GENTRL completing DDR1 inhibitor dis-
covery in 21 days. These AI-driven systems vastly accel-
erate and de-risk traditional drug development. Y. Li 
et al. (2023) [205], for instance, used Chemistry42 [206], 
a well-known platform in this field, to create promis-
ing small-molecule inhibitors that target the putative 
oncogene, CDK8, in order to control advanced solid 
tumors and acute myeloid leukemia. The most effective 
chemical exhibited significant antiproliferative effects 
 (IC50 = 2.4  nM) and sub-nanomolar enzyme inhibitory 
activity  (IC50 = 0.4  nM). These examples demonstrate 
how data-driven AI molecular generation techniques can 
create molecules with unique architectures, aiding in the 
investigation of new therapeutic scaffolds.

To find currently available medications that could 
be modified to act as RET inhibitors in the treatment 

of NSCLC, researchers [186] used a thorough compu-
tational approach. To predict and evaluate inhibitory 
effects of possible drugs, the methodology used molecu-
lar docking, a density functional theory (DFT) analysis, 
molecular dynamic simulations, and ML classifiers.

A dataset of 11,808 chemicals from the DrugBank 
database was used in the investigation. To predict these 
chemicals’ inhibitory activities against the RET protein, 
ML classifiers were trained [187]. To evaluate their bind-
ing affinities to the RET kinase domain, the models’ top 
candidates underwent additional precision docking. To 
assess the compounds’ stability and chemical reactivity, 
a DFT analysis was performed. Simulations of molecu-
lar dynamics were used to comprehend ligand–protein 
interactions. To guarantee the durability of the connec-
tions, molecular dynamic simulations were used to com-
prehend how the ligand–protein complexes behaved over 
time. The findings indicated the possibility of a number 
of drugs as treatment agents for RET-positive NSCLC by 
highlighting their strong inhibitory effects against RET. 
Schrödinger [188]. has created sophisticated computa-
tional systems that use AI and ML to improve molecu-
lar docking and virtual screening, two steps in the drug 
discovery process. Their method makes it possible to 
efficiently screen large chemical libraries, which facili-
tates finding viable medication candidates. Although the 
aforementioned study did not specifically make use of 
Schrödinger’s tools, the techniques used are consistent 
with what Schrödinger’s software package can perform. 
Schrödinger’s platform, for example, efficiently screens 
and rescores extremely vast chemical libraries by fusing 
physics-based techniques with ML-powered active learn-
ing. High hit rates across a variety of target classes were 
demonstrated for this method, indicating its promise for 
finding new inhibitors for cancer treatments.  In conclu-
sion, the work serves as an example of how combining 
computer simulations and ML can make it easier to find 
possible RET inhibitors for treating NSCLC. The tech-
niques used are representative of cutting-edge compu-
tational tools, such those created by Schrödinger, which 
improve the efficacy and precision of oncology drug dis-
covery procedures.

The Computational Analysis of Novel Drug Opportu-
nities (CANDO) platform finds protein properties that 
cause a drug’s action and uses ML and Network Phar-
macology to enhance drug repurposing. The approach 
predicts the effectiveness of drugs against a variety of 
diseases, including cancers, by integrating large-scale 
proteome-based chemical interaction modeling [189]. 
The collection includes a thorough drug-protein inter-
action matrix that compares hundreds of human pro-
teins to thousands of FDA-approved and experimental 
medications. To find important protein characteristics 
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affecting medication interactions and therapeutic out-
comes, CANDO [190] uses proteochemometric mod-
eling with CNNs and RFs to map molecular fingerprints 
to therapeutic outcomes. Multitarget modeling and fea-
ture extraction enhance prediction accuracy, validated 
via cross-validation and retrospective comparisons with 
clinical trials (Table 7). The results highlight the impact 
of protein–ligand interactions on repurposing accuracy 
and affirm AI’s role in advancing multitarget drug discov-
ery in oncology.

AI in radiation therapy and surgical robotics
Radiation oncology is a kind of cancer treatment that 
calls for interdisciplinary knowledge from fields such as 
biology, physics, engineering, and medicine. CT simula-
tions, target registration/contouring, medical imaging, 
diagnoses, prescriptions, treatment planning, treatment 
quality assurance, and treatment delivery comprise the 
standard radiotherapy workflow [220]. The radiation 
workflow has grown more complex due to technological 
advancements in recent decades, which have led to a sig-
nificant reliance on human–machine interactions (Fig. 5). 
The extensive use of image-guided radiation therapy has 
produced a vast volume of imaging data that require 
quick analysis. However, temporal limits restrict people’ 
ability to study and analyze vast amounts of data. How-
ever, machines can be trained using AI algorithms to take 
over many tedious tasks from humans, thereby enhanc-
ing the ability to deliver high-quality healthcare.. Many 
AI-based techniques have been put forth to address 
issues in many facets of radiotherapy since the advent of 
DNNs. Given the speed at which AI-assisted radiation is 
developing, intelligent automation in a number of radio-
therapy-related areas could significantly increase the effi-
cacy and efficiency of radiotherapy in the future [58].

Surgical robotics and AI: a developing field
With the convergence of surgical techniques and AI, the 
field of robotics is one that is rapidly developing and has 
the potential to completely transform surgery. With its 
capacity for learning, reasoning, and decision-making, 
AI has the potential to expand surgical robot capabilities 
(Fig. 5), improving operating room efficiency, safety, and 
precision [220].

Research demonstrates that collaboration between 
medical professionals and ML algorithms enhances deci-
sion-making and reduces errors. For example, ML-based 
lung cancer staging reached 93% accuracy, compared 
to 72% with clinical guidelines alone. By integrating 
diverse data sources, ML offers more precise and action-
able predictions than traditional methods. In surgery, 
AI improves performance by reducing errors through 
motion, energy, and force analysis, enabling automated 

and quantitative skill assessments. Tracking key move-
ment patterns aids in evaluating dexterity, supporting 
ongoing reevaluation, credentialing, and real-time feed-
back during training. Ershad et al. [221] proposed evalu-
ating surgical skill by analyzing a surgeon’s "movement 
style," based on the premise that expert surgeons perform 
procedures with greater ease, efficiency, and coordina-
tion. They collected kinematic data from 14 surgeons of 
varying experience, each performing two haptic feedback 
tasks (ring, rail, suture) three times. 3D electromagnetic 
tracking captured hand, wrist, and shoulder move-
ments during virtual simulations. Training videos were 
crowdsourced and labeled based on behavioral traits, 
and a classifier was trained accordingly. This approach 
improved skill classification accuracy by 68.5% over raw 
kinematic data. By focusing on qualitative, surgeon-spe-
cific motion traits (e.g., smoothness, calmness, synchro-
nization), this method reduces reliance on task-specific 
surgical knowledge for skill assessment [222].

Cone-beam CT (CBCT)-based online adaptive radia-
tion therapy for postoperative esophageal cancer patients 
incorporates DL and AI into radiation therapy to improve 
treatment precision and flexibility [223]. In order to min-
imize toxicity and enhance treatment results, the study 
made use of CBCT imaging to track anatomical changes 
in real time and modify radiation doses accordingly 
[207]. The dataset included pretreatment and daily CBCT 
scans of postoperative esophageal cancer patients. Using 
deformable image registration and DL-based segmenta-
tion, AI tracked tumor and organ shifts. Auto-contour-
ing with CNNs and U-Nets accurately delineated targets 
and critical structures, easing clinician workload. DNNs 
trained on prior CBCT data enabled effective image-
guided radiation adaptation. AI-powered online adaptive 
radiotherapy improved dose conformity, raised tumor 
control probability by 10%–15%, and reduced organ-at-
risk doses by up to 25%, minimizing complications. These 
results underscore AI’s potential to personalize and opti-
mize radiotherapy amid anatomical variability [223].

Robotic lung surgery using AI-assisted augmented real-
ity (AR) uses AR and AI to improve thoracic treatments’ 
accuracy, visualization, and decision-making [209]. To 
improve surgical precision and efficiency, this study 
employed DL-based segmentation, AI-driven imaging, 
and 3D visualization. CNNs and transformer models 
analyzed preoperative CT, MRI, and PET scans to gen-
erate detailed 3D reconstructions of lung structures, 
tumors, and vessels. These models were integrated into 
AR headsets or robotic consoles for real-time intraop-
erative guidance. Multi-modal inputs—annotated CTs, 
surgical videos, and histopathology supported accurate 
tissue differentiation and effective model training [224].
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The study showed that AI-assisted AR lowered the 
risk of intraoperative complications by improving tumor 
localization, vascular identification, and margin assess-
ment. According to clinical assessments, the AI-AR sys-
tem improved resection accuracy by 30% and cut down 
on operating time by 25% compared to traditional tech-
niques [225]. Additionally, precise robotic-assisted tumor 
removal, better suturing, and superior postoperative 
results were made possible by incorporating AI-powered 
robotic platforms, such as da Vinci surgical systems [226]. 
AI-driven dose planning in radiation therapy enhances 
tumor targeting while reducing radiation exposure to 
nearby healthy tissues. Based on patient-specific imag-
ing data, ML algorithms forecast tumor responses, opti-
mizing radiation regimens for individualized care [210]. 
Outcomes showed that AI-assisted operations resulted in 
a 20% decrease in postoperative complications and bet-
ter recovery of lung function. In thoracic oncology, the 
integration of AI, AR, and robotic surgery transformed 
minimally invasive lung cancer treatment, opening the 
door to safer, more effective, and customized surgical 

procedures in radiation therapy and robotic-assisted lung 
surgery [227].

AI-driven intraoperative metastasis detection and sur-
gical robotics integrate deep learning, computer vision, 
and robotic-assisted surgery to enhance treatment pre-
cision. This study explored how real-time AI analysis of 
intraoperative imaging (fluorescence, hyperspectral, MRI) 
improved tumor and metastasis identification, guiding 
surgical decisions and robotic actions [213]. AI models—
CNNs, transformers, GANs—processed histopathology, 
radiology, and intraoperative fluorescence images, refin-
ing tumor detection and robotic execution. Trained on 
over 50,000 annotated histopathology images and imaging 
scans, these models supported precise, minimally inva-
sive procedures. Systems like the AI-enhanced da Vinci 
robot use ML-based segmentation and haptic feedback to 
improve surgical dexterity and minimize tissue damage. AI 
enables real-time tumor localization using single or multi-
modal datasets, boosting intraoperative diagnosis and deci-
sion support. During Mohs surgery, a DL algorithm created 
by Sendín-Martín et  al. (2022) [214], demonstrated a DL 

Fig. 5 AI applications across cancer care workflows from treatment planning and drug recommendation to robotic surgery and drug discovery. 
AI enhances decision support, enables personalized radiotherapy, assists in surgery, and predicts drug efficacy and resistance, thereby improving 
precision, outcomes, and therapy development
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model using ex vivo confocal imaging that rapidly detected 
basal cell carcinoma with an AUROC of 0.94 in validation. 
Furthermore, AI algorithms use genetic and radiomic data 
to predict cancer metastases, constantly modifying surgical 
techniques to reduce the probability of recurrence. Predic-
tive analytics powered by AI further improve the planning 
of chemotherapy and radiation therapy, customizing care 
according to the tumor biology of each patient [215].

Valente et al. [228] explored AI’s role in surgical train-
ing, focusing on robotic surgery and AI-based skill 
assessment. AI enhances training by objectively evalu-
ating technique, precision, and decision-making during 
simulations—areas where traditional assessments often 
lack consistency. For example, AI can track hand move-
ments, timing, and instrument accuracy in simulated 
laparoscopic tasks, benchmarking them against expert 
standards. This enables educators to pinpoint specific 
strengths and weaknesses. However, AI should comple-
ment, not replace, traditional evaluations, as it strug-
gles to assess qualitative skills like clinical judgment and 
communication.

By learning from surgical movies, AI has been used in 
surgical robotics to teach robots how to carry out sim-
ple surgical procedures. A study team fed a model hun-
dreds of movies taken by da Vinci robot wrist cameras 
during surgery using ML architectures akin to ChatGPT 
[217]. This method showed how AI can improve robotic 
surgical systems and lower medical errors by enabling 
the robot to lift tissue, stitch, and manage needles. How-
ever, current robotic systems can be imprecise and have 
historically required a lot of coding to teach particular 
tasks, which can be a time-consuming process. Beyond 
its application in surgical settings, AI has also signifi-
cantly transformed other areas of cancer treatment, 
such as radiation therapy workflow management [229]. 
For example, a graphical user interface within a com-
mercial treatment planning system, automated template 
plan preparation, and AI models that predict optimal 
fluence maps were all features of an in-house AI plat-
form for automated head and neck intensity-modulated 
radiation therapy (IMRT) [230]. Clinical data were used 
to validate this system, showing that AI-generated plans 
reflected their design aims by offering a broad variety 
of tradeoffs between target volumes and organs-at-risk 
[218]. In a similar vein, a multistep integrated radia-
tion therapy workflow with AI support was developed 
for patients with nasopharyngeal cancer, encompassing 
processes from beam administration to CT scanning. 
The workflow in a research with 120 patients took a 
median of 23.2 min, and AI-generated outlines needed 
only minor adjustments for high-risk clinical target 
volumes and organs-at-risk. Remarkably, 92.3% of AI-
generated designs met dosimetric restrictions for the 

majority of organs-at-risk following initial optimization. 
These AI-powered platforms present chances to reduce 
the effort required by medical personnel, improve the 
quality of plans, and cut down on treatment planning 
times. The requirement for thorough validation, pos-
sible difficulties integrating with current clinical work-
flows, and guaranteeing the dependability and security 
of AI-generated plans in various clinical contexts are 
some of the drawbacks, though [219].

In contrast to open surgery, AI-based robotics offer 
numerous benefits by enhancing surgical precision and 
patient outcomes. Robotic arms provide superior stabil-
ity and dexterity compared to human hands, allowing for 
more-accurate surgical techniques. Additionally, robotic-
assisted surgery is often less invasive, requiring smaller 
incisions, which results in reduced trauma, faster recov-
ery times, and improved overall patient well-being [231]. 
Furthermore, these advanced systems incorporate cutting-
edge imaging technologies, such as 3D visualization, which 
enhance a surgeon’s ability to navigate complex anatomical 
structures with greater precision and confidence [232].

AI and patient management in oncology
AI in prognostic modeling and survival predictions
As genomic data become more standardized and analyti-
cal methods advance, AI holds great promise for develop-
ing reliable survival prediction algorithms. The complexity 
and cost of genomic data analysis place a heavy burden 
on clinicians, making diagnoses and treatment planning 
dependent on potentially limited expertise. This can lead 
to delayed or inaccurate decisions. Quantitative, data-
driven approaches are thus essential. Advanced ML and 
DL methods provide targeted solutions, enabling clini-
cians to enhance treatment planning and improve patient 
outcomes through innovative learning strategies [233].

A few sequential phases are involved in predicting 
survival times for cancer patients: (1) preprocessing of 
genomic data, (2) dimensionality reduction, (3) feature 
selection, (4) model training, and (5) survival time predic-
tions. A variety of genomic data types, including mRNA, 
DNA methylation, copy number alterations, and others, 
are preprocessed during the training phase (Table 8). The 
model is then trained using a variety of ML approaches 
after these features either separately or in combination 
are used to lower the dimensionality [234].

Using layered ANNs in conjunction with supervised or 
unsupervised learning approaches, sophisticated DL algo-
rithms automatically integrate feature selection, dimen-
sionality reduction, and prediction into a single procedure. 
DL models typically outperform conventional ML tech-
niques in forecasting survival times because they aim to 
uncover hidden patterns and relationships. DL is becoming 
increasingly well-liked as a potent technique for genomic 
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data analysis due to the growing availability of genetic data 
and sophisticated processing capabilities [243].

Current research being published frequently uses clini-
cal or imaging data to forecast survival times for cancer 
patients. These approaches, however, might not always 
yield precise forecasts and do not make full use of the 
abundance of information found in genetic data. There 
are not many reviews on survival predictions of cancer 
patients using genomic data, they are not particularly 
thorough, and there are no comparisons of various ML 
models that can inspire future studies [244].

ML techniques for predicting cancer survival
Including genetic data enhances survival time predic-
tion but introduces high dimensionality, requiring care-
ful consideration. To address this, researchers often apply 
dimensionality reduction or feature selection techniques. 
Survival prediction models typically consist of two com-
ponents: the predictive model and dimensionality reduc-
tion. These methods fall into two categories—supervised 
and unsupervised—with common approaches including 
principal component analysis (PCA), factor analysis, and 
non-negative matrix factorization (NMF) [245].

It is possible to reduce features using dimensionality 
reduction or feature selection techniques. Furthermore, 
new paradigms like the Multi-Cancer Multi-Omics Clini-
cal Dataset Laboratories (MCMOCL) [246] schemes, 
which use federated learning, AE, and XGBoost tech-
niques to improve accuracy, that decrease processing 
delays and improve security in heterogeneous cancer 
clinics, have been introduced by recent developments 
in digital healthcare. Other studies have investigated 
hybrid cancer detection schemes that use State-Action-
Reward-State-Action (SARSA) reinforcement learning 
[247] and multi-omics data processing in fog cloud net-
works with the goal of improving accuracy and decreas-
ing processing times in distributed clinical settings [248]. 
ML enables accurate survival prediction from complex 
genomic data, using methods like SVM, AdaBoost, RF, 
and decision trees. Key considerations include feature 
selection to reduce noise, interpretability for clinical rel-
evance, and validation (e.g., cross-/external validation) 
to ensure model robustness [249]. ML-based cancer sur-
vival prediction faces challenges like data heterogeneity, 
bias, overfitting, and poor interpretability. Small, imbal-
anced datasets reduce generalizability. Addressing these 
requires advanced feature engineering and regularization 
to ensure clinical reliability [250].

AI in remote monitoring and digital health
Digital health, commonly known as "eHealth" or "health-
tech," represents the convergence of technology and 
healthcare, and its importance in oncology is immense. In 

the realm of oncology, digital health involves a wide range 
of technologies, strategies, and innovations aimed at 
enhancing cancer prevention, diagnosis, treatment, and 
management through digital means [251]. These techno-
logical solutions include, but are not restricted to, elec-
tronic health records (EHRs), mobile health applications, 
wearable technology, telemedicine services, and analytics 
powered by AI. It has the potential to completely trans-
form oncology by providing cutting-edge solutions that 
improve patient care, diagnoses, and treatments. With 
developments in AI, VR, AR, predictive analytics, inter-
national cooperation, and changing legislation, the future 
of digital health in oncology appears bright [252]. Digital 
health enables early cancer detection through large-scale 
analysis of genetics, lifestyle, and imaging data, support-
ing timely, personalized treatment. By tailoring therapies 
to individual genetic profiles, it improves outcomes and 
reduces side effects [253].

Digital health tools like wearables and telemedicine 
enable remote monitoring, improving quality of life for 
cancer patients and reducing hospital visits. The data col-
lected accelerates research, drug development, and treat-
ment optimization [254]. As a catalyst for innovation, 
digital health holds the potential to transform global can-
cer care and significantly improve patient outcomes.

The Role of digital health in enhancing oncology outcomes
Enhanced diagnostics and personalized treatment
Integrating digital health technologies, including genomic 
sequencing and liquid biopsies, has significantly advanced 
cancer diagnostics by facilitating early detection. These 
innovative tools enable the identification of malignan-
cies at their earliest stages, often before clinical symptoms 
become apparent. Early detection is of paramount impor-
tance as it substantially increases the probability of suc-
cessful therapeutic outcomes. By diagnosing cancer at an 
incipient stage, clinicians can implement timely and tar-
geted treatment strategies, improving survival rates and 
enhancing patients’ overall quality of life [255].

Optimized care coordination and personalized treatment 
approaches
Digital health plays a crucial role in developing indi-
vidualized cancer treatment plans by leveraging patient-
specific genetic and molecular data. Through advanced 
analytics, healthcare providers can tailor therapeutic 
interventions to align with the unique genetic profile of 
each patient and the molecular characteristics of their 
malignancy. This precision-based approach enables the 
administration of treatments that directly target the bio-
logical mechanisms underlying the disease, thereby max-
imizing therapeutic efficacy while minimizing adverse 
effects [256].
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Patient empowerment and enhanced care coordination
Integrating EHRs serves as a foundational element in 
optimizing care coordination within oncology. EHRs 
consolidate comprehensive patient data, including one’s 
medical history, diagnoses, treatment regimens, pre-
scribed medications, and laboratory results. This central-
ized information repository ensures that all healthcare 
providers involved in a patient’s care, including primary 
care physicians, oncologists, radiologists, and other spe-
cialists, have immediate access to up-to-date medical 
records. Consequently, streamlined communication and 
collaboration among multidisciplinary teams reduce the 
likelihood of medical errors and facilitate more-informed 
clinical decision-making [257].

Telemedicine and remote consultations
Virtual healthcare technologies, including telemedicine, 
have become essential in improving care coordination in 
oncology. These digital solutions enable remote consulta-
tions, allowing oncologists and specialists to collaborate 
irrespective of geographical constraints. By fostering 
seamless interdisciplinary communication, telemedicine 
facilitates timely expert consultations, expediting diagno-
ses and treatment initiation. Ultimately, these advance-
ments ensure that cancer patients receive prompt, 
specialized care while mitigating delays associated with 
geographical and logistical barriers [258].

AI for enhancing clinical trials and patient recruitment
Clinical trials remain central to safe and effective drug 
development. With the rise of data-driven and person-
alized medicine, it’s essential for companies and regula-
tors to adopt tailored AI solutions that enhance research 
speed and efficiency. AI is increasingly recognized 
for its potential to support sustainable and optimized 
drug development, with several applications now being 
explored. To streamline drug research, robust AI mod-
els trained on appropriate datasets are needed to extract 
actionable insights, especially as data availability grows in 
personalized healthcare [259].

Clinical trial enrichment focuses on selecting patient 
subsets where drug effects are more evident, rather 
than testing efficacy in a general population. Includ-
ing non-responsive patients can dilute observed out-
comes. Ideally, genome-to-exposome profiling would 
guide eligibility by confirming relevant biomarkers, 
though such trials are rare and costly—particularly when 
imaging is involved. Thus, biomarker testing should be 
applied wherever feasible, even without full omics pro-
files. To uncover actionable biomarkers and subpopu-
lations, advanced analytics must integrate omics with 
fragmented data from EMRs, imaging, and handwritten 

notes. Tools like NLP, OCR, and computer vision auto-
mate this extraction. Yet, the volume and inconsist-
ency of EMR data complicate analysis. AI models, 
being data-agnostic, are well-suited to harmonize these 
inputs, supporting trial enrichment and biomarker dis-
covery—though care is needed to prevent overfitting, 
especially with class imbalance [260]. At least four molec-
ularly  different  forms  of  breast  cancer  have  been  iden-
tified  through  gene-expression  profiling  investigations 
[235]. Several  genetic  tests  have  been  developed  to  bet-
ter  predict  clinical  outcomes  and  assess  if  the 
addition  of  adjuvant  chemotherapy  to  endocrine  ther-
apy  is  worthwhile. Cardoso et  al. (2016) [261] assessed 
the clinical utility of the MammaPrint 70-gene expres-
sion signature for guiding adjuvant chemotherapy in 
early-stage breast cancer. By stratifying patients into low- 
or high-risk groups based on recurrence-associated gene 
expression, MammaPrint offers genomic insights beyond 
standard clinical-pathological criteria to reduce unnec-
essary chemotherapy. The phase 3 trial included 6,693 
women, with genomic risk determined via MammaPrint 
and clinical risk via a modified Adjuvant! Online tool. 
Patients with matching risk profiles (low-low or high-
high) were treated accordingly, while discordant cases 
were randomized. Among 1,550 women with high clini-
cal but low genomic risk, the 5-year survival rate without 
chemotherapy was 94.7% (95% CI: 92.5%–96.2%), with 
only a 1.5 percentage point drop in distant metastasis-
free survival compared to those who received chemo-
therapy. The study found that chemotherapy use could 
be reduced by 46.2% in high clinical-risk patients when 
guided by MammaPrint. This supports its role in ena-
bling more personalized treatment and reducing over-
treatment and side effects for low-genomic-risk patients. 
Still, challenges include limited long-term data, cost and 
accessibility barriers, and difficulty integrating genomic 
testing into routine care. The modest decline in survival 
also emphasizes the importance of careful patient selec-
tion and shared decision-making. In parallel, Kurtz et al. 
(2019) introduced the Continuous Individualized Risk 
Index (CIRI), a Bayesian model aimed at improving out-
come prediction in chronic lymphocytic leukemia (CLL) 
patients undergoing targeted therapy [238]. The CIRI 
model improved therapy response predictions by contin-
uously combining a number of prognostic markers, both 
clinical and molecular, while responding to changes in a 
patient’s state.

The methodology uses a Bayesian data analysis to simu-
late the link between different risk variables and progres-
sion-free survival (PFS). The CLL International Prognostic 
Index (CLL-IPI) considers age, immunoglobulin heavy 
chain (IGHV) mutation status, TP53 mutation or dele-
tion, staging information (Binet or Rai) [262], and serum 
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β2-microglobulin levels. There are also minimal residual 
disease (MRD) levels mentioned, which offer informa-
tion about how well a treatment is working. Because the 
Bayesian system continuously updates predictions based 
on changing patient data throughout therapy, it enables 
dynamic risk assessments.

Clinical trial data from 699 patients in the CLL8, 
CLL10, and CLL11 studies were among the datasets 
utilized to create the CIRI-CLL model. With a 23%–
30% improvement in the C-statistic for predicting PFS 
over 1–5  years, the data demonstrated that CIRI per-
formed better than conventional risk models, such as 
the CLL-IPI. CIRI successfully categorized patients 
into different risk groups, which were connected with 
various 3-year PFS rates (77.1% for low-risk, 54.5% 
for intermediate-risk, and 9.4% for high-risk patients), 
according to validation using the CLL14 trial cohort 
(432 patients) [263]. The CIRI model offers a num-
ber of advantages, especially when it comes to cus-
tomizing treatment regimens. By more precisely 
predicting which patients may benefit from particular 
medications, it enables clinicians to tailor their recom-
mendations based on each patient’s unique risk profile, 
increasing results [264]. Additionally, it facilitates con-
tinuous, customized patient risk monitoring as their 
condition changes. Its dependence on clinical trial data, 
which might not accurately reflect the overall popu-
lation of CLL patients, and the requirement for addi-
tional long-term validation to evaluate its efficacy in 
standard clinical practice are drawbacks. Furthermore, 
there can be difficulties incorporating this model into 
current clinical workflows, especially in environments 
with limited resources. Avanzo et  al. [239] examined 
radiomics and AI in cancer imaging, highlighting how 
ML and DL models (e.g., RFs, SVMs, CNNs) extract 
and analyze quantitative features to improve diagnosis 
and prognosis. DL, particularly CNNs, outperformed 
traditional ML in tasks like tumor segmentation and 
classification, using datasets like TCIA [240]. However, 
challenges remain, including the need for standardized 
imaging protocols, larger datasets for DL training, and 
validation across diverse patient populations. Despite 
these limitations, the integration of ML and DL in 
radiomics presents significant opportunities for more 
accurate, personalized medical predictions, advancing 
precision medicine in oncology and beyond.

Bakshi B et  al,. [241] evaluated the impact of C the 
Signs, an AI-powered clinical decision support tool, 
on cancer diagnosis rates in primary care. The obser-
vational cohort study included nearly 420,000 patients 
across 35 practices in eastern England (May 1, 2021 
– March 31, 2022). The platform analyzed compre-
hensive patient data—including medical history, tests, 

treatments, medications, demographics, and risk fac-
tors—using AI to assess cancer risk and recommend 
diagnostics or referrals. Practices using C the Signs saw 
cancer detection rates (CDRs) rise from 58.7% (2020–
2021) to 66.0% (2021–2022), a 12.3% increase (p < 0.05), 
while non-using practices maintained a stable CDR of 
58.4%. Notably, referral rates remained similar between 
groups, suggesting improved detection did not lead to 
over-referral. The findings underscore the potential of 
AI tools in primary care to enhance early cancer detec-
tion and enable timely intervention, potentially reduc-
ing cancer-related mortality.

Movano created the AI chatbot EvieAI, which is 
included into their Evie Ring, a smart ring with a well-
ness and health theme [242]. EvieAI, which was unveiled 
at CES 2025, stands apart for being post-trained solely on 
more than 100,000 peer-reviewed medical papers written 
by medical experts. Because it cites data from reputable 
sources like the Mayo Clinic, Harvard, and UCLA before 
answering, this method guarantees that the information 
it offers is accurate and reliable. By comparing its answers 
to various reliable sources, Movano asserted that EvieAI 
attained a 99% accuracy rate.

EvieAI is a conversational resource that focuses on 
women’s health and seeks to assist users by providing 
answers to questions about wellness and health with-
out making diagnostic recommendations. It is designed 
to recognize when it lacks an answer and refrains from 
responding to non-medical questions. For example, 
when a user exhibits symptoms, EvieAI might probe 
more deeply to gain a better understanding of the situ-
ation, but for more-serious problems, it will refer users 
to the proper resources or medical experts. The design 
of EvieAI places a strong emphasis on security and pri-
vacy. In order to protect user confidentiality, the platform 
uses industry-standard encryption for data transfer and 
storage, guarantees that discussions stay anonymous, and 
periodically removes conversation data.

Challenges and limitations of AI in cancer care
The benefits for cancer treatments still appear far off, 
despite the fact that AI applications in oncology continue 
to hold enormous promise. There are still many signifi-
cant issues and concerns, such as the difficulty of stand-
ardizing, gathering, and managing data; the bias present 
in training datasets; the absence of strong reporting 
guidelines; the relative dearth of prospective clinical vali-
dation studies; difficulties implementing user designs and 
workflows; antiquated legal and regulatory frameworks 
surrounding AI; and the exponential growth of knowl-
edge and dynamic data.
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Collection and administration burdens associated 
with data standardization
Unstructured, unique, and diverse methods are fre-
quently used to record and retain healthcare data. As a 
result, AI algorithms created using data from one sys-
tem might not work as effectively when used with data 
from another system. For AI to significantly influence 
oncology, the percentage of EHR data that is ontology-
integrated will rise as a result of standardizing nomencla-
ture and data gathering. These issues are being addressed 
by initiatives like the minimal Common Oncology Data 
Elements (mCODE) initiative, but it will require a lot of 
work to widely and reliably implement solutions [265].

Prejudiced training data
Pattern recognition is the main emphasis of AI as it 
exists now. As a result, any pattern seen in the data used 
to create the model will be carried over into predictions 
that the model produces. There being consistent differ-
ences between the data used to construct the model and 
the data to which the model is applied could be an issue 
[266]. For instance, traditionally underrepresented popu-
lations (such as women, ethnic minorities, adolescents 
and young adults, and the elderly) in a dataset may have 
an impact on AI’s capacity to produce an accurate rec-
ommendation for these specific subgroups when clinical 
trial data are used as the basis for the algorithm [266]. To 
avoid this kind of bias, it is also critical to guarantee rep-
resentative sampling across time (for example, recently 
treated versus previously treated patients) and data 
sources (for example, medical record data from various 
health systems). It can be concluded that inherent biases 
that are frequently found in training datasets will need to 
be addressed by AI-based solutions [267]. Computational 
techniques are being developed to identify, comprehend, 
and reduce prior bias in training datasets. Potential rem-
edies might include creating techniques to quantify the 
bias of a given data collection and defining criteria that 
define when bias is severe enough to raise doubts about 
using that dataset as a target for deployment or for train-
ing algorithms [268].

Absence of prospective clinical validation and research 
reporting guidelines
The lack of reporting guidelines for AI has led to a repro-
ducibility crisis, which may prevent AI from being widely 
used. Lack of repeatability is a serious concern that could 
be challenging to overcome because AI systems, particu-
larly DL techniques, are sensitive to minute details in data 
that cannot be discovered. This issue might be resolved 
by tightening reporting regulations on source codes 
and training circumstances of algorithms, but openness 

might also cause issues with intellectual property and 
competitive advantages for businesses that use AI [269]. 
While the broader background of AI studies in health-
care remains without common use reporting standards, 
some specialties have started formal guidelines. For 
example, for radiology, the CLAIM (Checklist for Artifi-
cial Intelligence in Medical Imaging) [270] guideline is an 
all-encompassing framework to provide transparency in 
study design, data handling, model development, evalu-
ation, and clinical deployment. Complementing these 
organization-specific efforts, the FUTURE-AI [271] 
framework, developed by 117 experts from 50 coun-
tries, outlines 30 best practices for trustworthy AI in 
healthcare, based on six principles: fairness, universal-
ity, traceability, usability, robustness, and explainability. 
It promotes standardized, safe, and clinician-ready AI 
across the full development lifecycle, emphasizing the 
need for domain-specific and cross-domain frameworks.

Challenges with workflows and user designs
The sociotechnical issues that arise in intricate adaptive 
healthcare systems must be addressed for AI to be suc-
cessfully implemented. AI-based solutions must be easy 
to use, add value for the user, and blend in smoothly with 
a clinician’s workflow in order to promote broad adop-
tion. This is a bigger obstacle for some AI applications 
than for others [272]. Key elements for adoption include 
having output that is both explainable and actionable, as 
well as being seamlessly integrated into clinical processes, 
even though not all AI systems that analyze data must be 
made available to doctors through interactive interfaces. 
However, oncologists’ clinical decision support systems 
(CDSSs) frequently need more engaging and informa-
tive interfaces [273]. The end-user must be able to see the 
dynamic features of AI-based solutions to the degree that 
they are multidimensional or adaptive. For instance, the 
physician must be able to see these aspects if AI-based 
CDSSs adapt over time to changes that take place dur-
ing therapy (Fig.  6) (such as anatomical and physiologi-
cal changes to the tumor and surrounding normal tissues 
during radiation) [273].

Dynamic data and knowledge
Algorithms used in real-world oncology scenarios will 
need to keep up with the exponential rise in cancer 
research regardless of the regulatory framework in place. 
Additionally, they will need to take into consideration 
dynamic changes in source data that may be brought 
about by new diagnostic technologies, upgrading of EHR 
systems, expansion of data standards and ontologies, or 
shifts in documentation and reimbursement rules. It is 
necessary to develop techniques to periodically assess 
algorithm accuracy or change algorithms when their 
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performance begins to deteriorate due to changes in 
underlying data distributions. It might also be necessary 
for some algorithms to incorporate an automatic expira-
tion feature, which would force reevaluation after a pre-
determined amount of time [274].

Future perspectives and emerging AI trends 
in oncology
Thanks to advancements in big data analytics, AI, and 
customized treatments, the healthcare industry is poised 
for dramatic changes in the near future. These develop-
ments have enormous potential to optimize healthcare 
delivery, and improve patient care and health outcomes. 
However, in order to guarantee responsible and equitable 

deployment, their incorporation into healthcare systems 
also presents difficult ethical conundrums that need to 
be carefully handled. This section looks at the state of 
healthcare going forward, highlighting the significance of 
cooperation between different stakeholders, the influence 
of emerging technologies, and ethical issues. In order 
to combine the multidisciplinary progress and issues 
in AI oncology, we present an integrated conceptual 
framework (Fig.  7). This framework identifies eight key 
domains that are essential for taking AI from research to 
practice with clinical efficacy, encompassing the entire 
pipeline from data acquisition to post-deployment and 
ethics.

Fig. 6 Key challenges limiting AI adoption in cancer care: core issues include lack of data standardization, biased training data, and insufficient 
clinical validation. These nested problems collectively hinder the reliability, generalizability, and clinical utility of AI‑driven cancer diagnostics 
and treatments
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AI-driven innovations are poised to transform diag-
nosis and treatment, with algorithms already enhanc-
ing medical imaging, predicting disease progression, 
and personalizing care. AI has demonstrated superior 
early detection capabilities, particularly in cancer, and 
is expected to further improve diagnostic precision 
and individualized treatment as it evolves. Big data 
analytics also holds promise for advancing healthcare 
by uncovering insights into disease prevention, treat-
ment efficacy, and population health trends. However, 
the use of large-scale patient data raises concerns about 
privacy and security. Robust data protection measures 
and legal frameworks emphasizing patient consent are 
essential to ensure individuals retain control over their 
data (Fig.  8). As AI, big data, and personalized medi-
cine continue to grow, healthcare professionals must 
be trained not only in technical skills but also in ethical 
considerations. Education should focus on best prac-
tices for integrating these technologies into care while 

upholding ethical standards. By fostering a culture of 
ethical awareness, healthcare systems can responsibly 
leverage technology to improve patient outcomes [275].

Conclusions
AI is no longer a secondary adjunct in oncology—it is 
becoming an essential, intrinsic component in advanc-
ing cancer therapeutics. By seamlessly integrating het-
erogeneous biomedical datasets into clinically actionable 
insights, AI is transforming every stage of cancer care: 
detection, diagnosis, treatment, follow-up, and research. 
This review underscores both the vast promise and 
complexity of embedding AI into oncology, spanning 
imaging modalities (CT, MRI, PET, ultrasound), histo-
pathology, genomics, proteomics, and more. AI shifts 
clinical decision-making from subjective estimations 
to high-accuracy, algorithmic diagnostics that often 
outperform conventional methods in speed, reproduc-
ibility, and precision. Beyond diagnosis, AI enables 

Fig. 7 Eight‑point conceptual framework for translational AI in oncology. This framework delineates eight critical areas required for effective AI 
deployment in cancer therapy: Data Acquisition, Preprocessing, Model Development, Internal/External Validation, Deployment & Monitoring, Ethical 
Considerations, Regulatory Compliance, and Patient‑Centric Design. Each one is defined by its prime purpose, primary challenges, and strategic 
needs. All these dependent factors make up an end‑to‑end handbook for AI development toward safe, ethical, and equitable clinical release 
in oncology
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personalized treatment planning, fine-tuned radiation 
dosing, enhanced robot-assisted surgeries, and discovery 
of novel therapeutic targets via data-intensive drug devel-
opment pipelines. On the patient management front, 
AI-powered wearables and virtual assistants facilitate 
real-time remote monitoring, boost treatment adher-
ence, and detect complications early. In clinical research, 
AI optimizes study design, patient stratification, and 
recruitment through real-time eligibility checks. Yet 
despite these advancements, challenges remain in achiev-
ing universal clinical adoption. Concerns about algo-
rithm transparency, reproducibility, and interpretability 
underscore the need to build trust among providers and 
patients. Regulatory frameworks for AI in healthcare 
are still evolving, and comprehensive governance mod-
els ensuring safety, efficacy, and innovation are urgently 
needed. Critical data-related challenges—bias, inequity, 
security, and interoperability—must be addressed, par-
ticularly as biased training data risks exacerbating exist-
ing health disparities across demographics and regions. 
A multidisciplinary ecosystem—uniting AI research-
ers, oncologists, ethicists, regulators, and patient advo-
cates—is essential to create equitable, transparent, and 
clinically valuable AI deployment standards. Medical 
education must evolve to equip future healthcare profes-
sionals with the skills to responsibly apply AI in clinical 
practice. Looking forward, AI’s convergence with feder-
ated learning, edge computing, digital twins, and quan-
tum ML offers exciting potential for highly granular, 
scalable, and personalized cancer care. Emerging syner-
gies between AI, synthetic biology, and de novo immu-
notherapy design point toward truly individualized 

next-generation treatments. Ultimately, deploying trans-
parent, privacy-preserving, and ethics-focused AI models 
will foster trusted healthcare systems. AI’s true potential 
lies not just in improving current practices but in reshap-
ing oncology into a predictive, preventive, participatory, 
and precision-driven discipline. With a human-centered 
approach and collaborative innovation, AI can usher in a 
transformative era in cancer care—benefiting all patients 
through smarter data use, outcome-driven strategies, and 
inclusive clinical impact.
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